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Abstract

Background: Mitochondria play a critical role in the cell and have DNA independent
of the nuclear genome. There is much evidence that mitochondrial DNA (mtDNA)
variation plays a role in human health and disease, however, this area of investigation
has lagged behind research into the role of nuclear genetic variation on complex traits
and phenotypic outcomes. Phenome-wide association studies (PheWAS) investigate
the association between a wide range of traits and genetic variation. To date, this
approach has not been used to investigate the relationship between mtDNA variants
and phenotypic variation. Herein, we describe the development of a PheWAS framework
for mtDNA variants (mt-PheWAS). Using the Metabochip custom genotyping array,
nuclear and mitochondrial DNA variants were genotyped in 11,519 African Americans
from the Vanderbilt University biorepository, BioVU. We employed both polygenic
modeling and association testing with mitochondrial single nucleotide polymorphisms
(mtSNPs) to explore the relationship between mtDNA variants and a group of eight
cardiovascular-related traits obtained from de-identified electronic medical records
within BioVU.

Results: Using polygenic modeling we found evidence for an effect of mtDNA variation
on total cholesterol and type 2 diabetes (T2D). After performing comprehensive
mitochondrial single SNP associations, we identified an increased number of single
mtSNP associations with total cholesterol and T2D compared to the other phenotypes
examined, which did not have more significantly associated SNPs than would be
expected by chance. Among the mtSNPs significantly associated with T2D we
identified variant mt16189, an association previously reported only in Asian and
European-descent populations.

Conclusions: Our replication of previous findings and identification of novel
associations from this initial study suggest that our mt-PheWAS approach is robust
for investigating the relationship between mitochondrial genetic variation and a
range of phenotypes, providing a framework for future mt-PheWAS.

Keywords: Mitochondrial DNA variation, mtSNP, PheWAS, GCTA, Mixed modeling,
Polygenic analysis
© 2014 Mitchell et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:crawford@chgr.mc.vanderbilt.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Mitchell et al. BioData Mining 2014, 7:6 Page 2 of 11
http://www.biodatamining.org/content/7/1/6
Background
As the primary energy producers of the cell, mitochondria are critical to cellular fitness.

While energy production is the function most often associated with mitochondria, the

organelle plays a vital role in other cellular processes including cholesterol synthesis,

fatty acid oxidation, ammonia detoxification, calcium homeostasis, and apoptosis, sug-

gesting that mitochondrial dysfunction could have far-reaching effects. Indeed, mito-

chondrial dysfunction has been observed in a variety of diseases, including amyotrophic

lateral sclerosis (ALS), Huntington’s disease, Alzheimer’s disease, and various types of

cancer [1].

Mitochondria maintain their own DNA separate from the nuclear genome. The

human mitochondrial genome consists of a double-stranded, circular chromosome

spanning 16,569 base pairs. This maternally inherited, compact genome contains 37

genes encoding 2 ribosomal RNAs, 22 transfer RNAs, and 13 protein-encoding genes

that are essential components of the oxidative phosphorylation complexes. Rare muta-

tions in mitochondrial DNA (mtDNA) give rise to a spectrum of diseases, including

Leber’s Hereditary Optic Neuropathy (LHON), Myoclonic Epilepsy with Ragged Red

Fibers (MERRF), Maternally Inherited Diabetes and Deafness (MIDD), and prostate

cancer [2]. Common mtDNA variation has also has been associated with common com-

plex diseases, including type 2 diabetes (T2D) [3,4], multiple cancers [5], Alzheimer’s [6],

and Parkinson’s [7]. Furthermore, mitochondrial single nucleotide polymorphisms

(mtSNPs) have been associated with quantitative trait variance among phenotypes,

such as triglycerides [8] and HDL-C [9], both known to play a role in cardiovascular

disease. The range of phenotypes associated with mtDNA variation underscores the

pleiotropic nature of mitochondrial genetic variation.

Phenome-Wide Association Studies (PheWAS) have been used to explore the associ-

ation between nuclear single nucleotide polymorphisms (SNPs) and a wide array of

phenotypes. To date, PheWAS have successfully used electronic-medical record (EMR)

data and large population-based survey data [10-15] to replicate previously reported

genome-wide association study (GWAS) findings, as well as to uncover intriguing novel

associations. These studies have also identified potential pleiotropy, in which single

SNPs are associated with multiple phenotypes [16]. However, thus far, the PheWAS ap-

proach has not been used to explore the relationship between mitochondrial SNPs

(mtSNPs) and multiple phenotypes.

While there has been some research focused on identifying the impact of mtDNA

variants on a number of complex traits, this relationship has been primarily explored

through association testing with single traits or outcomes. Further work is needed to

better characterize the relationship between mitochondrial genetic variation and a wide

range of outcomes; this can be done by applying the PheWAS approach. Thus, the goal

of this work was to develop a framework for implementing a mitochondrial PheWAS

(mt-PheWAS). A method yet to be explored for characterizing the relationship between

mitochondrial variation and phenotypes, in a PheWAS context, is the use of polygenic

modeling [17], which can provide an estimate of heritability by considering the amount

of phenotypic variation explained by genotypic variation. In this work, we demonstrate

the utility of polygenic modeling for prioritizing phenotypic outcomes prior to pursuing

mtSNP association analysis using a PheWAS approach. Within this framework, poly-

genic modeling, as well as haplogroup and mtSNP association tests can be used singly
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or in combination to explore the relationship between mtDNA variation and a range

of phenotypes in the context of mt-PheWAS. Applying the PheWAS approach will

allow for hypothesis-generation about the role of mtDNA variation in human health

and disease.

To test our mt-PheWAS framework, we explored the relationship between mtDNA

variation and eight cardiovascular-related phenotypes using Metabochip genotype data

from African Americans in the Vanderbilt University biorepository, BioVU. We began with

a polygenic approach, employing mixed linear modeling to investigate the overall contribu-

tion of mitochondrial genetic variation on trait variance. Single mtSNP association analysis

was then performed with all eight traits to identify specific genotype-phenotype associa-

tions. Using the polygenic approach we identified two traits with evidence for association

with mitochondrial genetic variation. Our single mtSNP association analysis confirmed the

correlation between the number of significant mtSNPs observed for each trait and the

overall proportion of trait variance explained by mitochondrial genetic variation, suggesting

that our proposed mt-PheWAS framework, which includes a phenotype filtering step via

polygenic modeling, is a valid approach for investigating the effect of mtDNA variation for

a range of phenotypes.
Methods
Study population and phenotypes

The Vanderbilt University Medical Center (VUMC) biorepository, BioVU, contains

more than 170,000 individual de-identified DNA samples linked to a de-identified ver-

sion of the EMR, known as the synthetic derivative [18]. As part of the Population

Architecture using Genomics and Epidemiology I (PAGE I) study, the Epidemiologic

Architecture for Genes Linked to Environment (EAGLE) study has genotyped 15,863

BioVU samples (EAGLE BioVU) consisting of individuals 18 years and older from di-

verse populations, including 11,519 African Americans. All samples were genotyped on

the Metabochip, a custom genotyping array containing 196,725 SNPs, the majority of

which were chosen based on previous associations with metabolic, cardiovascular, and

anthropometric traits, as well as to fine map the regions around these previously asso-

ciated variants [19]. Among the variants on the Metabochip are 135 mtSNPs, including

a putative T2D mtSNP and a rare MIDD mutation [19,20]. Genotyping was performed

by the Center for Human Genetics DNA Resources Core at VUMC, and quality control

was performed as previously described [21], resulting in 192,139 autosomal SNPs and

130 mtSNPs for use in this analysis.

In this pilot PheWAS, we accessed the African American samples in EAGLE BioVU

and selected eight cardiovascular-related traits for analysis, including: body mass index

(BMI), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipo-

protein cholesterol (LDL-C), triglycerides, mean corpuscular hemoglobin (MCH), T2D,

and hypertension. BMI was defined by manually excluding extreme outliers that were

likely a result of conversion measure inconsistencies within the EMR. Total cholesterol,

HDL-C, LDL-C, and triglycerides were reported in milligrams per deciliter (mg/dL).

Mean corpuscular hemoglobin was reported in picograms per cell (pg/cell). To obtain

values for each quantitative trait, the median value for each year was determined and

then the median of all years was stored as a single value per individual. For all
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continuous traits, only a single observation within the synthetic derivative was required

for an individual to be included in the analysis. Cases and controls for T2D, were

defined as previously described [22], except for the inclusion of those with a family

history of diabetes as controls. Hypertension was dichotomized as case or control, in

which cases were defined as having a systolic blood pressure greater than or equal to

140 mmHg, having a diastolic blood pressure greater than or equal to 90 mmHg, or

currently taking any hypertension medication. Controls were selected from the

remaining samples, excluding individuals with a history of prescribed hypertension

medications. Age is reported as the median age, in years, for each individual. Study

population characteristics are presented in Table 1.
Polygenic modeling

We performed polygenic analysis using mixed-modeling to determine the overall con-

tribution of mitochondrial genetic variation captured by the Metabochip to the vari-

ance of the eight selected traits. By first using polygenic modeling, phenotypes can be

prioritized or filtered based on putative contribution of mtDNA variation, assuming

that a lack of evidence for influence of mtDNA variation implies a reduced chance of

identifying specific single mtSNP associations. Genome-wide Complex Trait Analysis

(GCTA) [17], which employs a mixed linear model to estimate the overall impact of

genetic variation on trait variance, was used for the polygenic analysis. A key compo-

nent of GCTA is its use of a genetic relationship matrix (GRM) to estimate pair-wise

relatedness using a collection of genotypes within a dataset, based on additive genetic

effects. However, as opposed to the diploid nuclear genome, the mitochondrial genome is

haploid, so mitochondrial GRMs are calculated based on allelic sharing, rather than additive

effects. Unlike typical GWAS, in which the effects of single SNPs are calculated independ-

ently, GCTA evaluates the relative levels of genomic sharing between individuals, creating a

GRM and associating this relatedness to quantitative trait variation or binary trait risk.

For each trait, GCTA was used to fit a mixed linear model and estimate the propor-

tion of variance explained (PVE) by nuclear and mitochondrial genetic variation. Mixed

models consist of fixed and random effects. Here, the fixed effects included age, sex,
Table 1 Characteristics of study population

Trait/Phenotype Sample size Mean/% SD

Age (years) 9,559 46.1 16.8

Sex (% female) 9,559 65.4% —

Body Mass Index (kg/m2) 7,965 28.8 6.6

Total Cholesterol (mg/dL) 5,075 179.2 38.9

HDL-C (mg/dL) 4,792 52.7 16.9

LDL-C (mg/dL) 4,731 102.1 35.3

Triglycerides (mg/dL) 4,924 116.6 69.3

Mean Corpuscular Hemoglobin (pg/cell) 9,559 28.4 2.6

Hypertension (Cases/Controls) 6,147/2,664 — —

Type 2 Diabetes (Cases/Controls) 1,338/8,151 — —

The sample size, mean, and standard deviation (SD) are shown for continuous traits. Sample size is the number of African
American individuals in EAGLE BioVU with data available for a given trait. The numbers of cases and controls are shown
for each binary trait.
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and the first two nuclear principal components (PCs) as covariates. Eigenstrat was used

to generate nuclear PCs from the 192,139 autosomal SNPs that passed QC. The ran-

dom effect is empirical genetic relatedness, which was estimated using GRMs, created

via GCTA, for the nuclear and mitochondrial genomes, using 192,139 and 130 SNPs,

respectively.

Expectation-maximization (EM), the iterative method for finding the maximum likeli-

hood estimate, was used for restricted maximum likelihood (REML) analysis using

GCTA. REML provides estimates of the proportion of trait variance explained by

genetic variation in the nuclear and/or mitochondrial genome. A likelihood ratio test

(LRT) was performed comparing full and reduced models to determine the significance

of mitochondrial genetic variation on the overall mixed linear model for each trait. The

likelihood ratio test measures the significance of a specific model component. The full

model contained both a nuclear and mitochondrial GRM, while the reduced model

contained only a nuclear GRM. Here, we used the likelihood ratio test to evaluate the

contribution of mitochondrial genetic variation captured by the Metabochip to the

phenotypic variation or risk observed in the selected cardiovascular-related traits.
Single mtSNP analysis

We performed single mtSNP analysis for all traits to determine if filtering based on

results from our polygenic analysis was beneficial. We excluded 44 mtSNPs with a

minor allele frequency less than 1%, leaving 86 mtSNPs available for the single mtSNP

association analysis. PLINK [23] was used to perform linear or logistic regression for

continuous and binary traits, respectively, to investigate mtSNP-phenotype associations.

Both linear and logistic regression models were adjusted for age, sex, and the first two

nuclear PCs. Haplogroup association analysis was not carried out in this study. While

the mtDNA coverage on the Metabochip can be used to infer haplogroups, it is more

reliable for classifying populations of European descent than for other ancestries due to

the percent mitochondrial genetic variation captured [19,20].
Results
Polygenic modeling

All eight traits in our analysis had relatively low PVE by nuclear and mitochondrial

variation. Nuclear PVE ranged from 0.33% for MCH to 2.95% for triglycerides. Mito-

chondrial PVE ranged from 0.02% for MCH to 0.33% for total cholesterol (Figure 1).

The likelihood ratio tests performed to assess the relative significance of mitochondrial

genetic variation yielded a significant p-value of 0.046 for total cholesterol. Addition-

ally, T2D had a suggestive p-value of 0.055. The likelihood ratio test p-value for other

traits ranged from 0.15 to 0.50 (Additional file 1), suggesting that mitochondrial vari-

ation captured by the Metabochip does not contribute significantly to those traits.
Single mtSNP tests of association

Through polygenic modeling we identified total cholesterol and T2D as key traits and

proceeded with an mt-PheWAS to determine if the use of polygenic modeling for

phenotype prioritization is robust. Linear and logistic regressions adjusted for age, sex,

and the first two nuclear PCs were performed for continuous and binary traits,
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Figure 1 Correlation of mitochondrial PVE and number of significantly associated mtSNPs. The proportion
of variance explained by mitochondrial genetic variation (mPVE), calculated using GCTA, is shown on the
primary y-axis (bars shown represent standard error). The secondary y-axis displays the number of significantly
associated SNPs observed for each trait, plotted as black dots.
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respectively, to investigate the relationship between single mtDNA variants and all phe-

notypes in this study (Additional file 2). Assuming an uncorrected significance thresh-

old of p <0.05 and considering the number of mtSNPs tested (86), 4.3 SNPs would be

expected to be associated by chance alone. More SNPs were significantly associated

than would be expected by chance alone for total cholesterol and T2D (Figure 1).

Synthesis-view [24] was used to plot mitochondrial SNPs significantly associated with

total cholesterol and T2D (Figure 2). The remaining tested traits were associated with

zero to five SNPs (Figure 1). These results support our proposed framework of employ-

ing polygenic modeling to prioritize phenotypic traits for further analysis. Total choles-

terol and T2D exhibited the strongest signals, based on likelihood ratio tests, as well as

the greatest number of associated mtSNPs, confirming the expected correlation be-

tween PVE and the number of significantly associated mtSNPs.
Discussion
The goal of this work was to perform an exploratory analysis to establish a framework

for mt-PheWAS for investigating the relationship between mtDNA variation and a

range of phenotypes. We first employed a polygenic approach to investigate the global

effect of mtDNA variation on phenotypic variance for eight cardiovascular-related

traits. Given the metabolic trait focus of the nuclear SNP content on the Metabochip

and the nature of the selected phenotypes in this study, we expected the polygenic ana-

lysis would reveal significant proportion of trait variance explained. However, overall,

we observed relatively low PVE for both nuclear and mitochondrial genetic variation.

Only a single trait, total cholesterol, reached statistical significance in the polygenic

analysis, although T2D approached the statistical significance threshold of p < 0.05. The

low PVE may be due, in part, to the targeted nature of the Metabochip which does not



Figure 2 Mitochondrial SNPs significantly associated with total cholesterol and type 2 diabetes.
Regression analyses were performed to identify mtSNPs associated with: (A) total cholesterol and (B) type 2
diabetes (T2D). SNPs reaching the significance threshold of p < 0.05 were plotted using Synthesis-View.
The -log10 p-values and effect sizes (beta coefficients for total cholesterol and odds ratios for T2D) are
shown, plotted in order of base pair position. The dashed line for the beta coefficient values represents
no effect on total cholesterol for a given SNP.

Mitchell et al. BioData Mining 2014, 7:6 Page 7 of 11
http://www.biodatamining.org/content/7/1/6
contain a genome-wide distribution of SNPs that can be found on GWAS genotyping

arrays.

We also performed single mtSNP association analysis to identify mitochondrial

genotype-phenotype associations, and to relate the number of significant mtSNPs to

the observed mitochondrial PVE for all phenotypes. We found that total cholesterol

and T2D, which exhibited the most evidence for a contribution of mitochondrial gen-

etic variation to trait variance or risk, had the highest number of significantly associated

mtSNPs. Interestingly, there was some evidence for pleiotropy based on overlap of

significantly associated mtSNPs between traits; for example, three mtSNPs (mt14152,

mt15670, and mt15942) were significantly associated with both total cholesterol and

T2D (Additional file 2).

Studies report inconsistent results on the role of mitochondrial genetic variation in

T2D. In the present study we identified 13 mtDNA SNPs associated with T2D in

African Americans including variant mt16189, which was previously shown to be
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correlated with fasting insulin concentration [25], fasting glucose, and BMI [26], and

has been associated with T2D in both Asian [27] and European-descent populations

[28]. To our knowledge, this is the first reported association of mt16189 with T2D in

an African-descent population.

Notably, five of the mtSNPs (mt9072, mt12810, mt13845, mt14000, and mt14911)

associated with T2D in our population are common to the African mitochondrial

haplogroup L1c [29]. This haplogroup has previously been associated with peripheral

neuropathy in HIV patients receiving anti-retroviral therapy in two separate study pop-

ulations, although with opposite directions of effect [30,31]. Holzinger et al. [31] report

a decreased risk of peripheral neuropathy in individuals with the L1c haplogroup. Per-

ipheral neuropathy is a common comorbidity in patients with diabetes and is generally

linked to poor control of blood sugar [32]. Our results indicate that mitochondrial hap-

logroup L1c is associated with decreased risk of T2D. Taken together these data suggest

that mitochondrial DNA variation plays a role in both T2D and peripheral neuropathy.

Three mtSNPs (mt14152, mt15670, mt15942) significantly associated with increased

risk of T2D in our population are found on the L3e1 African mitochondrial haplogroup

which has previously been associated with hypertriglyceridemia in black South Africans

on anti-retroviral therapy [33]. Given that high triglyceride levels are associated with

increased risk for T2D, this is consistent with our finding that mtSNPs from the L3e1

haplogroup background are associated with increased risk of T2D. We also identified

associations between these three SNPs and total cholesterol; however they were nega-

tively correlated with total cholesterol.

While we were successful in establishing a mt-PheWAS framework for future EAGLE

and PAGE I studies, our framework is not without limitations. First, the PheWAS ap-

proach, even when applied to large datasets such as EAGLE BioVU, can be limited in

sample size and thus potentially power depending on the outcomes included in the

study. This mt-PheWAS is no exception as the sample sizes available for analysis varied

from 1,338 cases of T2D to 9,559 subjects for MCH. Additional limitations of the

PheWAS approach include the high-throughput manner in which phenotypes are

defined, and that regression models are only minimally adjusted for standard covariates.

Because the mt-PheWAS analyses presented herein were exploratory in nature we did

not correct for multiple testing. Further work will be necessary for external replication

and validation of these results. Finally, as previously mentioned, this present study is

limited to genotypic data from the Illumina Metabochip, a custom array designed for

fine-mapping specific GWAS-identified regions previously associated with specific phe-

notypes identified from mostly European-descent populations. The mitochondrial vari-

ants included on the Metabochip are also limited, impacting our ability to determine

haplogroups for the samples in this study.
Conclusions
We outlined and tested a framework for performing mt-PheWAS to investigate the

relationship between mitochondrial genetic variation and a range of phenotypes. We

characterized the utility of polygenic modeling as a method for prioritizing phenotypes

for PheWAS by performing both polygenic modeling and comprehensive single mtSNP

association testing for a group of eight metabolic traits. Further, we identified multiple
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single mtSNP associations for total cholesterol and T2D. Our data indicate that, despite

relatively limited mtSNP coverage, the Illumina Metabochip is useful in identifying

mitochondrial genotype-phenotype associations. Our results also demonstrate that the

EAGLE mt-PheWAS framework is capable of identifying known genetic associations

and has the potential to uncover novel associations contributing to the complex

relationship between human health and mitochondrial genetic variation.

Additional files

Additional file 1: Mitochondrial and nuclear PVE and LRT p-values. This table shows data from GCTA, including
PVE and SE, for all eight metabolic traits.

Additional file 2: SNP ID, SNP Location, Regression p-values, and number of significant SNPs. This table shows
p-values from regression analysis using PLINK.
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