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Abstract

Background: Identifying epistasis or epistatic interactions, which refer to nonlinear
interaction effects of single nucleotide polymorphisms (SNPs), is essential to
understand disease susceptibility and to detect genetic architectures underlying
complex diseases. Though many works have been done for identifying epistatic
interactions, due to their methodological and computational challenges, the
algorithmic development is still ongoing.

Results: In this study, a method epiACO is proposed to identify epistatic interactions,
which based on ant colony optimization algorithm. Highlights of epiACO are the
introduced fitness function Svalue, path selection strategies, and a memory based
strategy. The Svalue leverages the advantages of both mutual information and
Bayesian network to effectively and efficiently measure associations between SNP
combinations and the phenotype. Two path selection strategies, i.e., probabilistic
path selection strategy and stochastic path selection strategy, are provided to
adaptively guide ant behaviors of exploration and exploitation. The memory based
strategy is designed to retain candidate solutions found in the previous iterations,
and compare them to solutions of the current iteration to generate new candidate
solutions, yielding a more accurate way for identifying epistasis.

Conclusions: Experiments of epiACO and its comparison with other recent methods
epiMODE, TEAM, BOOST, SNPRuler, AntEpiSeeker, AntMiner, MACOED, and IACO are
performed on both simulation data sets and a real data set of age-related macular
degeneration. Results show that epiACO is promising in identifying epistasis and
might be an alternative to existing methods.

Keywords: Epistatic interactions, Ant colony optimization, Bayesian network, Mutual
information

Background
It has been widely accepted that genome-wide association studies (GWAS) play a great

role on understanding disease susceptibility and genetic architectures underlying complex

diseases, and lots of single nucleotide polymorphisms (SNPs) speculated to associate with

diseases have been identified. Nevertheless, most of them seem to be responsible for the

causation of Mendelian diseases [1], and they have poor ability in explaining non-

Mendelian diseases, i.e., complex diseases, such as cancer, heart disease, cardiopathy,

Alzheimer’s disease, hypertension and many others [1, 2]. Recent advances in GWAS
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confirm that nonlinear interaction effects of SNPs, namely, epistasis or epistatic interac-

tions, could unveil a large portion of unexplained heritability of complex diseases [2].

Therefore, many algorithms have been proposed for identifying epistasis. However, due to

their methodological and computational challenges, the algorithmic development is still

ongoing [1, 3, 4].

Current epistasis detection methods can be mainly classified into three categories

based on their search strategies: exhaustive search [5–7], stochastic search [8–10], and

heuristic search [2, 11–15]. Exhaustive search evaluates the associations of all SNP

combinations with the phenotype. Wan et al. [5] developed BOOST (BOolean

Operation-based Screening and Testing) which has two stages to analyze all pairwise

epistatic interactions in genome-wide case-control studies. Zhang et al. [6] proposed

TEAM (Tree-based Epistasis Association Mapping) which updates contingency tables

by utilizing the structure of a minimum spanning tree to search two-SNP epistatic

interactions. Ritchie et al. [7] used MDR (Multifactor Dimensionality Reduction) to

identify epistasis, which divides genotypes into low-risk and high-risk groups to reduce

search space. As far as we know, MDR is one of the most popular methods in this field.

Though these methods show great performance on identifying epistatic interactions in

small scale data sets, they have poor ability on large scale data sets due to their expo-

nential time complexities [1, 3]. Performance of stochastic search methods depend on

their sampling numbers, and therefore they are not suitable for genome-wide scale data

sets [13]. Tang et al. [8] used epiMODE (epistatic MOdule DEtection) to detect

multiple-SNP epistatic interactions by introducing the concept of epistatic module and

designing a Gibbs sampling strategy. Jiang et al. [9] proposed epiForest (detection of

epistatic interactions using random Forest) which uses random forest to detect epistatic

interactions in case-control studies. Zhang et al. [10] developed BEAM (Bayesian Epis-

tasis Association Mapping) to identify epistasis which categorizes SNPs into three non-

overlapping groups based on their posterior probabilities. Heuristic search methods

generally obtain solutions at substantially reduced time costs, based on their introdu-

cing heuristic information and prior knowledge of biological data. For instance, Wan et

al. [11] proposed SNPRuler to identify epistatic interactions using predictive rules.

Though heuristic search methods sometimes miss global optimal solutions and only

obtain several local optimal solutions, they are still promising methods so far.

More recently, many ant colony optimization (ACO) based methods, which belong to

the family of heuristic search methods, have been reported for identifying epistatic

interactions. Wang et al. [12, 15] proposed AntEpiSeeker and AntEpiSeeker2.0 based

on ACO with the two-stage design to detect epistatic interactions. Both of them per-

form well in their respective experiments though they require large amounts of ants

over numerous iterations to obtain acceptable solutions [15]. Shang et al. [2] developed

AntMiner to detect epistatic interactions, which is a generalized method of AntEpiSee-

ker by incorporating heuristic information into ant-decision rule. Although in terms of

detection power, it wins most of compared methods, AntMiner needs unaffordable

running time to obtain results, which hinders its widely application. Jing et al. [13] pro-

posed MACOED for detecting epistatic interactions, which is a multi-objective ACO

supervised heuristic search method, combining both logistical regression and Bayesian

network. Though experiments show that MACOED outperforms other compared

methods in both detection power and computational feasibility for large data sets, its
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pheromone updating strategy is not as effective as it claims to be. Our previously pro-

posed method IACO [16] is an alternative to existing ACO based methods, but it is

sensitive to SNPs displaying strong marginal effects.

In this paper, we develop a method epiACO to identify epistatic interactions, which

based on ACO algorithm. Highlights of epiACO are the introduced fitness function

Svalue, path selection strategies, and a memory based strategy. The Svalue leverages

the advantages of both mutual information and Bayesian network to effectively and effi-

ciently measure associations between SNP combinations and the phenotype. Two path

selection strategies, i.e., probabilistic path selection strategy and stochastic path selec-

tion strategy, are provided to adaptively guide ant behaviors of exploration and exploit-

ation. The memory based strategy is designed to retain candidate solutions found in

the previous iterations, and compare them to solutions of the current iteration to gen-

erate new candidate solutions, yielding a more accurate way for identifying epistasis.

Experiments of epiACO and its comparison with other recent methods epiMODE,

TEAM, BOOST, SNPRuler, AntEpiSeeker, AntMiner, MACOED, and IACO are

performed on both simulation data sets and an age-related macular degeneration real

data set. Results show that epiACO is promising in identifying epistatic interactions

and might be an alternative to existing methods. The Matlab version of epiACO run-

ning on Microsoft Windows is available online at: https://sourceforge.net/projects/

epiaco1/files/epiACO.rar/download.

Methods
General ant Colony optimization (ACO)

The general ACO takes inspiration from the foraging behavior of some ant species.

Ants walking to and from a food source communicate with each other indirectly by se-

creting pheromones on the ground, which will gradually evaporate as time passes. The

subsequent ants perceive the presence of pheromones and tend to follow the paths with

higher pheromone concentration [17]. Such a mechanism forms a positive feedback

and eventually most of the ants, if not all, are able to transport food to their nest in the

shortest path.

Mathematically, each ant choose its next position through a probability density func-

tion (PDF), which is updated by pheromones and heuristic information. The PDF of

the general ACO is defined as

Pij
k tð Þ ¼ τij tð ÞαηijβP

u∈Uk tð Þτiu tð Þαηiuβ
i∈Uk tð Þ

0 otherwise

8>>><
>>>:

ð1Þ

where Pij
k tð Þ is the probability of ant k that chooses the next position j from the current

position i at iteration t. τij(t) is the pheromones of the path from position i to position j

at iteration t. The heuristic information of the path from position i to position j is de-

noted as ηij. α and β are parameters that control the importances of pheromones and

heuristic information respectively. The positions that are not selected so far by ant k at

iteration t are stored in Uk(t).
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In ACO, ants find the optimal solutions through continuous updating pheromones.

Pheromones of the path from position i to position j at iteration t+1 are updated

according to the formula

τij t þ 1ð Þ ¼ 1−ρð Þτij tð Þ þ Δτij tð Þ ð2Þ

where ρ is a evaporation coefficient, and Δτij(t) is the increment of pheromones of the

path from position i to position j at iteration t, which is defined as

Δτij tð Þ ¼
Xm
k¼1

Δτkij tð Þ ð3Þ

Δτkij tð Þ ¼
Q

Sk tð Þ if ant k via the path of ij at iteration t

0 otherwise

8<
: ð4Þ

where m is the number of ants. The increment of pheromones of the path from pos-

ition i to position j for ant k at iteration t is denoted as Δτkij tð Þ. The path length for ant

k at iteration t is denoted as Sk(t). Q is a user-specified positive constant.

Fitness function Svalue

Mutual information

In probability theory and information theory, the mutual information of two random

variables is a measure of the mutual dependence between the two variables. More spe-

cifically, it quantifies the amount of information obtained about one random variable,

through the other random variable. The mutual information is usually used as an asso-

ciation measure in feature selection problems [2, 18, 19]. In epiACO, mutual informa-

tion is used to measure the associations between SNP combinations and the

phenotype, which can be written as

MI S;Yð Þ ¼ H Sð Þ þH Yð Þ−H S;Yð Þ ð5Þ

where H(S) is the entropy of S, H(Y) is the entropy of Y, H(S,Y) is the joint entropy of

both S and Y. Here, S represents a SNP combination, and Y represents the phenotype.

The entropy and the joint entropy are defined as

H Sð Þ ¼ −
X
j
1
¼1

3

⋯
X
j
K
¼1

3

p sj1 ;⋯; sjK
� �

⋅ log p sj1 ;⋯; sjK
� �� � ð6Þ

H Yð Þ ¼ −
X
j¼0

1
p yj
� �

⋅ log p yj
� �� �

ð7Þ

H S;Yð Þ ¼ −
X
j1¼1

3

⋯
X
jK¼1

3 X
j¼0

1

p sj1 ;⋯; sjK ; yj
� �

⋅ log p sj1 ;⋯; sjK ; yj
� �� �

ð8Þ

where s is the genotype of a SNP, coded as {1, 2, 3} corresponding to homozygous

common genotype, heterozygous genotype, and homozygous minor genotype; y is

the label of a sample, coded as {0, 1} corresponding to control and case; and p(⋅)
is the PDF.

It is seen that a greater mutual information value means a stronger association

between the SNP combination and the phenotype.
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Bayesian network

The Bayesian network is a probabilistic graphical model that represents a set of random

variables and their conditional dependencies via a directed acyclic graph (DAG) [20]. In

general, the Bayes theorem can be written as

P N jDð Þ ¼ P DjNð ÞP Nð Þ
P Dð Þ ð9Þ

where P(N|D) is the posterior probability of the Bayesian network model N given the

data D, P(D|N) is the class-conditional density, P(D) is the probability of D, and P(N) is

the prior probability of N.

In the DAG, the joint probability distribution of n nodes, e.g., x1 , x2 , ⋯ , xn, is

defined as

p x1; x2 ;⋯; xnð Þ ¼
Y
i¼1

n

p xijparent xið Þð Þ ð10Þ

where parent(xi) represents the parent node of xi. In this study, SNPs and the pheno-

type are denoted as nodes of DAG respectively [21–24]. The directed edges going from

SNP nodes to the phenotype node implies that this SNP combination shows correlation

with the phenotype [25]. According to Eq. (9), P(D|N) can be computed while all vari-

ables in the DAG are discrete values,

P DjNð Þ ¼
Y
i¼1

I Γ
PJ
j¼1

αij

� �

Γ ri þ
PJ
j¼1

αij

� �Y
j¼1

J Γ rij þ αij
� �
Γ αij
� �

0
BB@

1
CCA ð11Þ

where I is the combinatorial number of SNP nodes with different values. Specifically, if

l-SNP nodes link to the phenotype node, the combinatorial number of SNP nodes is 3l

since one SNP has three genotypes. J is the state number of the phenotype node, which

is equal to 2. ri is the number of cases with SNP nodes taking the ith combination. rij is

the number of cases with the phenotype node taking the jth state and its parents taking

the ith combination. αij is a parameter that refers to the prior belief about the number

of cases while the nodes taking the corresponding ith combination and jth state [13].

More often, in order to take an equal likelihood for all possible distributions in each

Bayesian network model, P(N), P(D) are usually set to constants and αij = 1. Then we

obtain the following formula,

P N jDð Þ∝
Y
i¼1

I J−1ð Þ!
ri þ J−1ð Þ!

Y
j¼1

J

rij!

 !
ð12Þ

On the basis of previous studies [22, 26, 27], K2 score is introduced and defined as

K2 score ¼
Y
i¼1

I J−1ð Þ!
ri þ J−1ð Þ!

Y
j¼1

J

rij!

 !
ð13Þ

Besides, logarithmic form of the K2 score can be written as
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K2 scorelog ¼
X
i¼1

I Xriþ1

b¼1

log bð Þ‐
X
j¼1

J Xrij
d¼1

log dð Þ
 !

ð14Þ

It is seen that a lower K2 score implies a greater correlation between the SNP com-

bination and the phenotype.

Svalue

In epiACO, the fitness function plays an important role on deciding which SNP combina-

tions are selected as the optimal solutions. Consequently, a novel fitness function Svalue

is introduced, which combines both mutual information and Bayesian Network. The mu-

tual information can effectively measure the nonlinear relationships between SNP combi-

nations and the phenotype without a complex modeling [28]. The Bayesian network is

widely used as a promising measure for measuring dependence of several variables [27].

In order to leverage the advantages of these two measures, Svalue is defined as

Svalue Að Þ ¼ MI
K2 scorelog

ð15Þ

It is seen that the higher the Svalue score, the stronger the association between the

SNP combination and the phenotype.

ACO based method epiACO for identifying epistasis

The pseudo code of epiACO is given in Fig. 1, which is mainly consist three strategies,

namely, the path selection strategy, the pheromone updating strategy, and the memory

based strategy.

Path selection strategy

In epiACO, m ants are represented by {m1, ⋯ ,mk, ⋯ ,mm} respectively, each of which

is used to evaluate a K-SNP combination at each iteration, where K is a user-specified

order. The probability of ant k selecting SNP i at iteration t is denoted as Pi
k tð Þ, which

is defined as

Pi
k tð Þ ¼ R q≤q0

S q > q0

�
ð16Þ

In order to control the rate of convergence, avoid falling into local optimal solution,

two path selection strategies, that is, probabilistic path selection strategy and stochastic

path selection strategy, are provided to adaptively guide ant behaviors of exploration

and exploitation. q0 is a threshold, which defined as the ratio of current iteration num-

ber to the total iteration number. q is a number that randomly generated from the uni-

form distribution of [0, 1] while Eq. (16) is employed.

The probabilistic path selection strategy is defined as

R ¼
τi tð ÞαηiβP

u∈Uk tð Þ
τu tð Þαηuβ i ∈Uk tð Þ

0 otherwise

8>><
>>: ð17Þ

where τi(t) is the amount of pheromones for SNP i at iteration t and ηi is the heuristic

information of SNP i. Uk(t) is a set of SNPs that are not selected by ant k at iteration t.
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The stochastic path selection strategy is defined as

S ¼ 1 i ¼ rand V k tð Þð Þ
0 otherwise

�
ð18Þ

where all SNPs at iteration t is sorted with the descending pheromones, and the latter

half is represented as Vk(t).

This strategy allows epiACO to cover a wider search space while the iteration num-

ber is small and to converge on promising regions of the search space while the

iteration number turns to large.

Pheromone updating strategy

In epiACO, the pheromones of all SNPs are updated according to the following formula

τi t þ 1ð Þ ¼ 1−ρð Þτi tð Þ þ Δτi tð Þ þ Δτ�i tð Þ ð19Þ

where Δτi(t) is the increment of pheromones of SNP i at iteration t. Besides, additional

pheromone increment Δτi
∗(t) is adopted to reward the SNPs that belong to the candi-

date solutions.

The Δτi(t) and the Δτi
∗(t) are respectively defined as

Fig. 1 The pseudo code of epiACO
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Δτi tð Þ ¼
Xm
k¼1

Δτki tð Þ ð20Þ

Δτi
k tð Þ ¼ Svalue Að Þ k∈Mi tð Þ

0 otherwise

�
ð21Þ

Δτ�i tð Þ ¼
Xm
k¼1

Δτki
� tð Þ ð22Þ

Δτi
k� tð Þ ¼ ξSvalue Að Þ k∈Ni tð Þ

0 otherwise

�
ð23Þ

where Mi(t) is the set of ants that select SNP i at iteration t. A is the SNP combination

that has been selected. Svalue(A) is the Svalue of SNP combination A. Ni(t) is the set of

ants that select SNP i which belongs to candidate solutions. ξ is a specified parameter

that used to control the additional increment of pheromones, and the recommended

range is [0.2, 0.5].

Memory based strategy

In epiACO, SNP combinations that selected by ants at each iteration are evaluated by

the fitness function Svalue. In order to retain candidate solutions with high Svalue

scores found in the previous iterations, instead of traditional ACO completely discard-

ing the solutions from previous iterations due to each iteration is independent of each

other, a memory based strategy is introduced. First, all SNP combinations selected at it-

eration t are ranked with the descending Svalue scores. Second, an inflection point of

these descending Svalue scores is computed using the formula

f ¼ arc max
g¼3

m
Svalue Ag

� �
−Svalue Ag−1

� �� �
− Svalue Ag−1

� �
−Svalue Ag−2

� �� �� � ð24Þ

where Ag is the SNP combination and Svalue(Ag) is the Svalue score of the SNP combin-

ation Ag. Third, the SNP combinations with top f Svalue scores are viewed as the candidate

solutions. Fourth, candidate solutions of previous iterations are compared to solutions of

the current iteration to generate new candidate solutions, which will continue to be used in

the next iteration. The merit of this strategy is that good solutions generated in any of the it-

erations will not be lost, yielding a more accurate way for epistasis searching.

Results and discussion
Evaluation measures

Detection power is one of the generally accepted and widely used evaluation measure

in the field of identifying epistasis [2, 8, 10, 11, 29–31]. In this study, we directly use

the detection power proposed by previous studies [2, 8, 10, 11, 29–31], which is defined

as the proportion of data sets in which the epistasis models are perfectly identified with

no false positives. That is,

Power ¼ R
G

ð25Þ

where R is the number of data sets that epistasis models in them are successfully de-

tected, G is the number of all experimental data sets.
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Computational complexity is also analyzed. We measure running time in the same

computational environment to assess realistic applicability of compared methods (Intel

G640 2.80GHz CPUs, 32GB RAM, Microsoft Windows, MATLAB).

Simulation and real data sets

We exemplify 5 commonly used benchmark models of 2-SNP epistatic interactions

for the study [8, 10, 31–34]. Details of the models are given in Table 1. Specific-

ally, Model 1 is the model that displays both marginal effects and interaction effect

(ME model), the penetrance of Model 1 increases only when both SNPs have at

least one minor allele [8, 10]; Model 2 is also the ME model that display both

marginal effects and interaction effect, the additional minor allele at each SNP of

which does not further increase the penetrance [10]; Model 3 is randomly chosen

from references [33, 34] that show no marginal effects but interaction effect (NME

model); Model 4 is directly cited from the reference [33], which is also a NME

model; Model 5 is a ZZ NME model [32].

For each model, 100 data sets are simulated by epiSIM [35], each containing

2000 cases and 2000 controls. In the first 50 data sets, 100 SNPs are genotyped,

while in other 50 data sets the number of genotyped SNPs is increased to 1000.

For each data set, random SNPs are set with their minor allele frequencies chosen

from [0.05, 0.5] uniformly.

A real data set of age-related macular degeneration (AMD) is also used for test-

ing epiACO. AMD, refers to pathological changes in the central area of the ret-

ina, is the most important cause of irreversible visual loss in elderly populations,

Table 1 Details of 5 commonly used benchmark models of 2-SNP epistatic interactions

Models MAF(a) MAF(b) Prevalence Penetrance function

Genotypes
(SNP A)

Genotypes (SNP B)

BB Bb bb

ME Models Model 1 0.300 0.200 0.100 AA 0.087 0.087 0.087

Aa 0.087 0.146 0.190

aa 0.087 0.190 0.247

Model 2 0.400 0.400 0.050 AA 0.042 0.042 0.042

Aa 0.240 0.270 0.420

aa 0.240 0.440 0.090

NME Models Model 3 0.500 0.500 0.300 AA 0.470 0.230 0.270

Aa 0.240 0.270 0.420

aa 0.240 0.440 0.090

Model 4 0.400 0.400 0.171 AA 0.068 0.299 0.017

Aa 0.289 0.044 0.285

aa 0.048 0.262 0.174

Model 5 0.500 0.500 0.010 AA 0.000 0.000 0.100

Aa 0.000 0.050 0.000

aa 0.100 0.000 0.000

Prevalence is the proportion of samples that occur a disease. Penetrance is the probability of the occurrence of a disease
given a particular genotype.MAF(a) is the minor allele frequency of a. AA, Aa, and aa are homozygous common
genotype, heterozygous genotype, and homozygous minor genotype
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and is considered as a complex disease having multiple epistatic interactions [8].

The AMD data set contains 103,611 SNPs genotyped by 96 cases and 50 con-

trols, which has been widely used as a benchmark data set [2, 8, 9, 12, 13, 15,

16, 29, 36, 37].

Experiments on simulation data sets

In the study, performance of epiACO is analyzed by comparison with 8 typical 2-SNP

epistasis detection methods, i.e., epiMODE, TEAM, BOOST, SNPRuler, AntEpiSeeker,

AntMiner, MACOED, and IACO. Among them, BOOST and TEAM are exhaustive

search methods, epiMODE is a stochastic search method, others are heuristic search

methods. In particular, AntEpiSeeker, AntMiner, MACOED, and IACO are all ACO

based methods, which will be discussed in more detail than others since they belong to

the same family, as well as epiACO.

The first experiment is performed on 100-SNP data sets. The parameters of each com-

pared method are generally set as default. Only a few are modified according to sugges-

tions in their respective user manual to balance result accuracy and computational cost.

For epiMODE, the iteration number is set to 100. For TEAM, the permutation number is

set to 100. For BOOST, the iteration threshold is set to 10. For a fair comparison, param-

eter settings of the ACO based methods are same. Specifically, the iteration number m

and the ant number T are set to 25 and 200 respectively. The initial pheromone τ0, the

heuristic information η, and the parameters α and β are all set to 1. The evaporation coef-

ficient ρ is set to 0.2. The constant ξ is set to 0.3. For obtaining accurate results, each

method runs 20 times with different random seeds on each data set of each model, which

can ensure that the method has not been biased by its initial starting conditions. The aver-

age detection power and the average running time with their respective standard devia-

tions on 100-SNP data sets are recorded in Table 2. It is seen that epiACO is comparable

and sometimes superior to compared methods, especially ACO based methods.

For ACO based compared methods, epiACO outperforms AntEpiSeeker and IACO

in terms of detection power on all models while they have the similar running time.

epiACO has higher detection power than those of AntMiner and MACOED on ME

models, but lower detection power than those of them on NME models. Since ME

models are the primary models of epistatic interactions in real genetic architectures

underlying complex diseases and NME models are special cases, epiACO is more suit-

able for real applications than other two methods. AntMiner has higher detection

power than that of epiACO on NME models due to heuristic information of SNPs be-

ing incorporated into its ant-decision rules, which on one hand improves detection

power, and on the other hand significantly increases running time, hindering its widely

application on large scale data sets, like those for GWAS. For MACOED, it is in fact

the stochastic search method since its pheromone updating strategy is only used for

more frequently detecting the epistatic interactions that have been detected in the pre-

vious iterations, rather than to identify better epistatic interactions. As it is known to

all, stochastic search methods are good at identifying NME models, and hence detec-

tion power of MACOED on NME models are higher than that of epiACO.

For other compared methods, their results are consistent with and complementary to

previous reported results [31]. Both BOOST and SNPRuler have perfect detection
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power on NME models but detect nothing on ME models since they only focus on

identifying NME models. TEAM performs well on some models and worse on others,

implying that it is model sensitive. epiMODE detects nothing in four models and only

has moderate detection power on Model 1. On the contrary, epiACO performs well on

all models, either NME models or ME models, shows that epiACO is model-free and

has high stability and reliability.

The second experiment is performed on 1000-SNP data sets. The purpose of this ex-

periment is to demonstrate that epiACO has a place for larger data sets and performs

better than compared methods. AntEpiSeeker, MACOED, IACO and epiACO are com-

pared on these data sets with the parameters of the iteration number being 100 and the

ant number being 500. Other parameters are the same as those of the first experiment.

TEAM, epiMODE, AntMiner and SNPRuler are not considered here due to their

unaffordable computational cost or memory on high-dimensional data sets [31]. Since

BOOST is an exhaustive search method only focusing on NME models, its results on

1000-SNP data sets can be inferred that it detects nothing on ME models and has per-

fect detection power on NME models. Each compared method also runs 20 times with

different random seeds on each data set of each model to ensure that the method has

not been biased by its initial starting conditions. The average detection power and the

average running time with their respective standard deviations on 1000-SNP data sets

are recorded in Table 3. It is seen that epiACO indeed performs better on larger data

sets than compared methods. Specifically, it is the fastest one among the methods;

though detection power does not reach a perfect level due to the small iteration num-

ber and the ant number, epiACO is still the winner.

The third experiment is performed on 100-SNP data sets to test the convergence and

contribution of epiACO with the parameter settings being the same as those of the first

experiment, and results of which are shown in Fig. 2. From Fig. 2a, it is seen that detec-

tion power of all models increase as the iteration numbers increase, and gradually tend

to be stable while the iteration numbers come to 25, which might be the evidence that

epiACO has converged after 25 iterations in the first experiment. The Fig. 2b shows

the contributions of different path selection strategies in epiACO. It is clear that the

probabilistic path selection strategy plays a decisive role on ME models while the sto-

chastic selection strategy plays a decisive role on NME models. Therefore, they

Table 3 The average detection power and the average running time with their respective
standard deviations of compared methods on 1000-SNP data sets

Evaluation measures Models AntEpiSeeker MACOED IACO epiACO

Detection power (%) ME Models Model 1 36.10 ± 3.86 16.33 ± 5.16 100.00 ± 0.00 100.00 ± 0.00

Model 2 0.00 ± .0.00 18.14 ± 4.75 17.62 ± 4.67 35.33 ± 3.26

NME Modes Model 3 0.00 ± .0.00 9.80 ± 2.74 7.00 ± 2.93 10.30 ± 2.69

Model 4 0.00 ± .0.00 6.10 ± 2.94 4.90 ± 2.19 9.90 ± 2.83

Model 5 0.00 ± .0.00 9.60 ± 3.34 5.70 ± 2.77 11.23 ± 3.57

Running time (second) ME Models Model 1 357.11 ± 13.08 323.81 ± 18.47 301.27 ± 13.43 231.38 ± 12.65

Model 2 305.40 ± 16.33 334.01 ± 17.74 270.31 ± 18.91 229.33 ± 15.91

NME Models Model 3 281.08 ± 17.23 337.49 ± 16.72 253.00 ± 18.82 253.41 ± 12.57

Model 4 262.75 ± 14.26 345.21 ± 19.41 277.04 ± 14.37 241.41 ± 10.02

Model 5 305.99 ± 14.88 354.87 ± 13.48 314.40 ± 12.35 267.49 ± 11.63
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supplement each other and both of them are indispensable for epiACO. In order to test

the contribution of the ant system, both epiACO and a simple random search are run

on all models with 200 ants. Fig. 2c records the detection power of them after 25 itera-

tions, and Fig. 2d is a box plot of iteration numbers of them while obtaining the global

optimal solutions. Results in these two subfigures show that the detection power of

epiACO after 25 iterations is higher than that of the random search on all models,

which implies that the introduced ACO system improves the performance of the

algorithm.

Application to real data set

Potential of the epiACO can also be verified by analyzing a real AMD data set with dif-

ferent parameter settings (m,T, ρ) being (10,000, 500, 0.2) and (20,000, 250, 0.2). The

captured 2-SNP epistatic interactions that might be associated with the AMD are re-

ported in Table 4 with ascending Chi-square p-values.

It is seen that most reported epistatic interactions contain either rs380390 or

rs1329428, which is due to these two SNPs having strongest main effects among all

SNPs, leading to their combinations with other SNPs usually displaying strong inter-

action effects, and hence being identified. SNPs rs380390 and rs1329428 reside in the

CFH gene, mutations in this gene have been associated with hemolytic-uremic syn-

drome (HUS) and chronic hypocomplementemic nephropathy. These two SNPs are be-

lieved to be significantly associated with AMD [8]. There are only two detected

epistatic interactions in the table not containing either rs380390 or rs1329428, that is,

(rs1740752, rs1368863) and (rs1740752, rs943008), which are the first time being iden-

tified that might be associated with the AMD. Both SNPs of the former locate in the

noncoding regions, might lead to AMD through regulating gene expression levels.

Fig. 2 The convergence and contribution of epiACO with the parameter settings being the same as those
of the first experiment
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Obviously this is a bold speculation, needs further studies in depth with the use of

more case-control samples, and also the biological experiments, though they are be-

yond the scope of this study. SNP rs1740752 appears in these two epistatic interactions,

but its main effect is moderate, implying not only that it influences the phenotype

mainly through its interaction effects with other SNPs, but also that epiACO is promis-

ing in identifying epistatic interactions displaying no marginal effect but interaction ef-

fects. SNP rs2224762 resides in the intron of KDM4C gene, and chromosomal

aberrations and changes in expression of this gene may be found in tumor cells. SNP

rs943008 resides in the intron of NEDD9 gene, altered expression of which is strongly

associated with cancer. The NEDD9 overexpression is documented to occur and in

some cases linked the process of tumorigenesis of many different malignances. Besides,

NEDD9 has been studies for a possible association with late onset Alzheimer’s disease,

and may be important for recovery from stroke. Therefore, mutations in NEDD9 gene

might involve in AMD. We hope that, from these results, some clues could be provided

for the exploration of causative factors of AMD.

Conclusions
It has been widely accepted that complex diseases are mainly caused by epistatic inter-

actions. In the study, a method epiACO based ACO algorithm is presented for detect-

ing epistatic interactions. Highlights of epiACO are the introduced fitness function

Svalue, path selection strategies, and a memory based strategy. The Svalue leverages

the advantages of both mutual information and Bayesian network to effectively and effi-

ciently measure associations between SNP combinations and the phenotype. Two path

selection strategies, i.e., probabilistic path selection strategy and stochastic path selec-

tion strategy, are provided to adaptively guide ant behaviors of exploration and exploit-

ation. The threshold of q0 allows epiACO to cover a wider search space while the

iteration number is small and to converge on promising regions of the search space

while the iteration number turns to large, resulting in high detection power not only in

ME models but also in NME models. The memory based strategy is designed to retain

Table 4 Top 10 captured epistatic interactions associated with AMD. CFH: complement factor H.
N/A: no gene is available. MED27: mediator complex subunit 27. KDM4C: lysine (K)-specific
demethylase 4C. NCALD: neurocalcin delta. ISCA1: iron-sulfur cluster assembly 1. NEDD9: neural
precursor cell expressed developmentally down-regulated 9

SNP 1 SNP 2 P-value

Name Gene Chromosome Name Gene Chromosome

rs380390 CFH 1 rs1363688 N/A 5 4.5728 e-09

rs380390 CFH 1 rs2224762 KDM4C 9 3.2929 e-08

rs380390 CFH 1 rs1374431 N/A 2 3.9086 e-08

rs1740752 N/A 10 rs1368863 N/A 11 9.8438 e-08

rs380390 CFH 1 rs223607 N/A 6 1.9797 e-07

rs1329428 CFH 1 rs9328536 MED27 9 2.1498 e-07

rs1740752 N/A 10 rs943008 NEDD9 6 3.8365 e-07

rs380390 CFH 1 rs718263 NCALD 8 5.1901 e-07

rs380390 CFH 1 rs2402053 N/A 7 1.1131 e-05

rs380390 CFH 1 rs10512174 ISCA1 9 3.9083 e-05
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candidate solutions found in the previous iterations, and compare them to solutions of

the current iteration to generate new candidate solutions, yielding a more accurate way

for identifying epistasis. Experiments of epiACO and its comparison with other recent

methods epiMODE, TEAM, BOOST, SNPRuler, AntEpiSeeker, AntMiner, MACOED,

and IACO are performed on both simulation data sets and a real data set of age-related

macular degeneration. Results show that epiACO is promising in identifying epistasis

and might be an alternative to existing methods.

The aim of this study is to develop an epistasis detection method based on ACO

algorithm, which is comparable and sometimes superior to existing methods, especially

ACO based methods for identifying epistasis. This does not mean that methods based

on other principles are not suitable for identifying epistasis, and their performance are

worse than epiACO. We believe that each method has its own merits and limitations,

and the more the methods based on different principles being proposed, the faster this

problem being solved. For instance, the common standard conjugate gradient algorithm

[38] and the genetic algorithm [39] are important optimization algorithms, and can un-

doubtedly deal with this problem.

Although the results demonstrate that epiACO performs well on both simulation

data sets and a real AMD data set, several limitations remain. First, although detection

power is the generally accepted and widely used evaluation measure for detecting

epistatic interactions [2, 8, 10, 11, 29–31], and we directly use it in this study, other

evaluation measures, for example, sensitivity, specificity, accuracy, balanced accuracy,

and so on, should be used to carry out a broader performance analysis. Second, several

important parameters of epiACO, including the number of ants, the number of itera-

tions and the evaporation coefficient, should be discussed in detail and give their

recommended settings respectively. Though how to set parameters appropriately is a

great challenge for the family of swarm intelligence algorithms, like ACO algorithm.

These limitations inspire us to continue working in the future.
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