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Abstract

Background: Mapping disease-associated genetic variants to complex disease
pathophysiology is a major challenge in translating findings from genome-wide
association studies into novel therapeutic opportunities. The difficulty lies in our
limited understanding of how phenotypic traits arise from non-coding genetic
variants in highly organized biological systems with heterogeneous gene expression
across cells and tissues.

Results: We present a novel strategy, called GWAS component analysis, for
transferring disease associations from single-nucleotide polymorphisms to co-
expression modules by stacking models trained using reference genome and tissue-
specific gene expression data. Application of this method to genome-wide
association studies of blood cell counts confirmed that it could detect gene sets
enriched in expected cell types. In addition, coupling of our method with Bayesian
networks enables GWAS components to be used to discover drug targets.

Conclusions: We tested genome-wide associations of four disease phenotypes,
including age-related macular degeneration, Crohn’s disease, ulcerative colitis and
rheumatoid arthritis, and demonstrated the proposed method could select more
functional genes than S-PrediXcan, the previous single-step model for predicting
gene-level associations from SNP-level associations.

Keywords: Genome-wide association study, Network biology, Gene candidate
discovery

Introduction
Genome-wide association studies (GWAS) seek to identify how genetic variations, typ-

ically represented as single-nucleotide polymorphisms (SNPs), contribute to variability

in expression of phenotypic traits or diseases across the population. GWAS, which is

made possible by the availability of the reference human genome [1, 2], represents con-

temporary efforts to map collective genetic architecture to common diseases. Since the

first GWAS in 2005, applications of this technique have facilitated identification of risk
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variants for various diseases, including age-related macular degeneration [3], inflamma-

tory bowel disease (IBD) [4–6], type 2 diabetes [7, 8] and many others. For example,

GWAS have discovered over 200 risk loci for IBD that encompass a wide range of bio-

logical processes, including innate and adaptive immunity, autophagy, and epithelial

permeability [9].

Currently, identification of therapeutic targets from GWAS remains difficult and rela-

tively inefficient, largely because SNP associations often do not directly indicate optimal

therapeutic targets nor the complex mechanism underlying disease pathogenesis [10].

The presence of non-coding causal SNPs is one of the major obstacles to functional im-

plications of the mechanisms of disease [11]. Studies have demonstrated the widely-

spread SNP associations with tiny effect sizes can collectively contribute to a large por-

tion of heritability for complex traits such as schizophrenia [12] and height [13]. These

ubiquitous genetic signals across genome, acting directly on any genes, may propagate

through interconnected gene regulatory network to affect functions of disease-related

genes [14]. Studies have also shown that hub genes, genes interacting with many other

genes, are subject to negative evolutionary selection [15–17], hinting the potential of

combing network topology with genetic signals in search of therapeutic targets. This

“omnigenic” point of view thus make us wonder how to distill the ubiquitous genetic

signals into effects on the gene network.

To this end, we developed a hierarchical approach that maps disease associations

from SNPs to genes, and eventually to transcriptomic modulation. We first developed

tissue-specific co-expression networks to determine co-expression modules, a collection

of genes that are modulated concurringly, and used it to demonstrate that genetic asso-

ciations can be hierarchically mapped to these gene modules. We demonstrate that this

approach, requiring only GWAS summary data, determines module associations as ac-

curate as those computed directly from individual-level data. We then applied this

technique to GWAS of four complex disorder to demonstrate the applicability of

GWAS component analysis and gene candidate discovery.

Methods
Overview of the proposed method

We took a two-stage approach to discover disease-associated gene components (Fig. 1a).

First, we mapped SNP associations to gene associations using S-PrediXcan [18], which

utilizes a linear model that maps SNP dosage to gene expression to predict gene associ-

ations ZG
g from SNP associations ZX

i (Fig. 1b). Both associations are linked by

ZG
g ≈ Σi∈ModelgWgi

σXi
σGg

ZX
i ð1Þ

where W is the weight matrix of the linear model fitted using individual-level data from

the Genotype–Tissue Expression project (GTEx) [19], and σGg and σX
i are the standard

deviations of a gene g and a SNP i, respectively.

In the second stage, we estimated the disease association of an eigen-gene component

Ll that represents the activity of a co-expression module. A co-expression module rep-

resents a group of genes whose expression is collectively modulated, while the eigen-

gene component summarizes the overall expression of this gene group by the largest
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variation. Specifically, the eigengene of a co-expression module is defined as the first

principal component of the measured gene expression profile in the module [20]. Given

the linearity of principal component analysis, we can compute the eigengene by multi-

plying a weight matrix R to the gene expression matrix. We note that this is analogous

to the way S-PrediXcan computes gene expressions from SNP dosages and thus the

statistical theory of S-PrediXcan can be carried over, as we summarize in the following.

Given the weight matrix R, the disease association ZL
l of an eigen-gene component Ll

can be estimated by

ZL
l ≈ Σg∈ModellRlg

σGg
σLl

ZG
g ; ð2Þ

where σLl is the standard deviation of the eigen-gene component Ll. Equations

(1) and (2) thus transfer the disease associations from genomic space to tran-

scriptomic space, and ultimately to co-expression modules. Under the null

hypothesis, ZL
l is a standard normal random variable. We thus refer to a compo-

nent, with a score ZL
l significantly deviating from 0 as a genome-wide significant

(GWAS) component.

We propose using Bayesian networks (BN) to discover putative causal genes of

GWAS components. We sought to discover functional genes by determining the

overlap between a GWAS component and a tissue-specific BN. The “functionality”

of a gene candidate g0 is evaluated based on the odds ratio of the overlap between

its children on the BN and the GWAS component. Specifically, we selected puta-

tive causal genes by testing whether the set S1 = {g ∈ B| g is in a GWAS component}

is overrepresented by S2 = {g ∈ B|g is downstream of g0 in the BN}, where B is the

set of background genes defined by the intersection of genes used in constructing

S − PrediXcan models and the Bayesian networks. The Bayesian networks were con-

structed using RIMBANet [21].

Fig. 1 Schematic diagram of GWAS component analysis. a We designed a two-stage method to map SNP
associations to component associations. Associated GWAS components were integrated with Bayesian
networks to facilitate therapeutic discovery. GWAS component is a component with a score ZLl significantly
deviating from 0. b In the first stage, S-PrediXcan was used to infer gene associations from SNP
associations. Gene-to-Component model were fitted by WGCNA, and the corresponding associations were
computed as in Eq. (2) (see text). Models in B) were built using GTEx reference data
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Computation of gene-level associations by S-PrediXcan

To map SNP associations to gene associations, we used the recently proposed method

S-PrediXcan to predict tissue-specific gene associations. We briefly summarize S-

PrediXcan as follows: given Xi, the allelic dosage for SNP i, Tg, the predicted expression

of gene g, and Y, the phenotype of interest, S-PrediXcan assumes a pre-trained model

that maps allelic dosages to the predicted expression by

Tg ¼ Σi∈ModelgWgiXi þ ϵ ð3Þ

where W is the weight matrix of the linear model fitted using individual-level genotype

data [18]. On top of this linear model, S-PrediXcan estimate the gene association

ZG
g ¼ γg=seðγgÞ from the SNP associations ZX

i ¼ βi=seðβiÞ, where βi and γg are estimators

of effect sizes and se(βi) and se(γg) are the variances of the estimators of gene g and SNP i,

respectively. Barbeira et al. [18] demonstrated that both associations are approximately

related by

ZG
g ≈ Σi∈ModelgWgi

σXi
σG
g
ZX
i ð4Þ

where σG
g and σXi are the standard deviations of gene g and SNP l. Similar results were

obtained via a different derivation [22]. We summarized their approximation as follows:

Given random variables Xi whose covariance Γ is known, the association of its linear

transformation Tg ¼ Σi∈ModelgWgiXi to trait Y can be approximated by Eq. (4), where

σGg ¼ P
ijW igΓijWgj.

Similar methods exist for mapping SNP associations to gene associations. Several

methods infer gene-level associations as aggregated effects of a group of SNPs by model-

ing the linkage disequilibrium (LD) structure using, for example, chi-squared statistics

[23, 24] or hypothesis testing [25]. Another class of methods attempt to integrate expres-

sion quantitative trait loci (eQTLs) with GWAS signals. For example, COLOC seeks to

determine whether eQTL and GWAS signals are consistent with a shared causal variant

[26]. Summary mendelian randomization (SMR) includes instrumental variables to deter-

mine the causative effects of gene expressions on a phenotype from eQTLs [27]. TWAS

[22] and S-PrediXcan [18] combine information of the LD structure and eQTLs into

multivariate analysis to infer trait-associated genes. Theoretical and empirical comparison

on COLOC, SMR, TWAS and S-PrediXcan can be found in [18].

Computation of GWAS component associations

Our proposed method further assumes that overall activity of a co-expression module,

termed eigen-gene component L, can be represented by a mixture of gene expression T, i.e.,

Ll ¼ Σg∈ModulelRlgTg :

The matrix R consists of the weighted contributions of genes to an eigen-gene

component. Applying the relation in Eq. (4) to L, trait association ZL
l can be ap-

proximated by
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ZL
l ≈ Σg∈ModulelRlg

σGg
σLl

ZG
g

Building the eigen-gene component models

To determine the weight matrix R, we applied weighted correlation network analysis

(WGCNA) to the GTEx RNA-seq data. Covariates were first removed following the

procedure used in building S-PrediXcan models. For consistency, we confined the ana-

lysis to the same genes used in building S-PrediXcan models. Co-expression modules

were estimated from each tissue independently. We tuned the minimum of module size

to 5 to allow detection smaller modules. The eigen-gene component was then com-

puted as the first principal component of the expression matrix of co-expressed genes.

Construction of Bayesian networks

The Bayesian networks (BN) were constructed using RIMBANet [21, 28, 29]. The esti-

mation and validation of BNs are reported in previous studies [30, 31]. Briefly, GTEx

data were first normalized to ensure a normal distribution, and then discretized into

three clusters using the k-means approach. The number of clusters was adjusted to two

if any of the three clusters contained only a few samples. Each gene was limited to hav-

ing no more than three parent nodes. The final network was pooled into a consensus

network from 1000 repeated runs. Cycles and weak edges were then pruned to ensure

that the final network was a directed acyclic graph.

Simulation test

We simulated a scenario to test Eq. (1) using genotype data of 2504 individuals from the 1000

Genomes Project [32]. We first used S-PrediXcan to compute the predicted gene expression

of these 2504 individuals. Eigen-gene components were then computed as weighted averages

of these predicted gene expression using WGCNAmodels fitted from the GTEx Whole Blood

data. We then simulated a trait caused by a single component as Y= L1 + α ϵ with a randomly

selected eigen-gene component L1. We tested the GWAS component method under various

signal-to-noise ratios (SNRs) std(L1)/(std(L1) + α), which represents heritability in a broad

sense. The selected component is referred to as the causal component, whereas the other

components are non-causal. In this scenario, we expect to see a strong z-score from the se-

lected component and minor signals from the other components. The associations to the

eigen-gene components were then tested using 1) predicted eigen-gene components from ge-

notypes of 2504 individuals and 2) the proposed GWAS component analysis.

In silico validations of putative targets

To evaluate these gene candidates, we conducted two in silico validations. First, we evalu-

ated whether mutations in gene candidates could result in disease phenotypes in mouse

models. The Phenotype/Alleles project of Mouse Genotype Informatics (MGI) is a data-

base that provides rich information about mutant alleles and their resultant phenotypes in

various mouse models [33]. We extracted the phenotypes of disease mouse models (Sup-

plementary Table 6) from MGI. Phenotypes associated with gene candidates were also ob-

tained from MGI. We considered a gene candidate to be a hit if its associated phenotypes

were significantly enriched in the phenotypes of at least one disease mouse model.
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Second, we evaluated whether the perturbation of a gene candidate could result in

disease signatures in cell lines. For this purpose, we queried the characteristic direction

of a single-gene perturbation, including shRNA knockdown, overexpression and ligand

binding, from L1000CDS [34]. Disease characteristic direction signatures were con-

structed using crowd curated data CREED [35], including one AMD, five CD, 22 UC

and seven RA case–control studies (Supplementary Table 7). The cosine distance was

used to evaluate the relevance of two characteristic direction signatures. Specifically, a

gene candidate was considered a LINCS hit if its characteristic direction was signifi-

cantly correlated (cosine distance ~ 1) or anticorrelated (cosine distance ~ − 1) with at

least one disease characteristic direction.

Statistical overrepresentation test

The overrepresentation test is a statistical test for determining whether the level of

overlap between two sets is due to chance. The test requires three inputs: two sets S1,

S2 to be compared and a background set B. It is assumed that the elements in S1 and

S2 are all drawn from the background set B. The chance that the observed data were

generated by random overlap can be evaluated by the hypergeometric distribution

p ¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þ!
n!a!b!c!d!

where

a ¼ # S1∩S2ð Þ; b ¼ # S1 n S2ð Þ; c ¼ # S2 n S1ð Þ; d ¼ # B n S1⋃S2ð Þð Þ

are elements of the contingency matrix. For significant associations between S1 and S2,

we define enrichment odds ratio OR = (a/b)/(c/d). Two sets are said to be enriched if

OR is greater than 1 and p is less than a given threshold.

We summarize the overrepresentation tests used in our study below:

1. Bayesian network: in the results section, we sought to discover functional genes by

determining the overlap between an associated component and a tissue-specific

BN. The “functionality” of a gene candidate g0 is evaluated based on the OR of the

overlap between its children and the associated components. Specifically, the inputs

for the overrepresentation test are as follows:

B ¼ genes used in S-PrediXcanf g⋂ genes in the Bayesian Networkf g
S1 ¼ g∈Bjg is in an GWAS componentf g
S2 ¼ g∈Bf jg is downstream of g0 in the Bayesian Networkg

2. Mouse genome informatics: in the results section, we evaluated in silico whether

the mutation of a gene has been associated with relevant disease phenotypes in a

mouse model. We set up the overrepresentation test as follows

B ¼ all mouse phenotypes in MGIf g
S1 ¼ p∈Bjp is a phenotype associated with a gene candidatef g
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S2 ¼ p∈Bf jp is a phenotype of the mouse modelg

Matching characteristic directions

The characteristic direction is a computational method for finding a high-dimensional

vector that best differentiates gene expression between cases and controls [36]. The

characteristic direction, generally unit-normalized, is determined as the maximizer of

the ratio of posteriors of two Gaussians with a shared covariance:

log
P G ¼ 0jX ¼ xð Þ
P G ¼ 1jX ¼ xð Þ ¼ log

π0

π1
−
1
2

μ0−μ1ð ÞTΣ−1 μ0−μ1ð Þ þ xTΣ−1 μ0−μ1ð Þ:

G indicates the cases and controls. We aim to compare how similar the characteristic

direction of a gene perturbation experiment is to the characteristic direction of a dis-

ease. We followed Clark. et al. to compute the similarity of two characteristic directions

by the cosine distance:

d v1; v2ð Þ ¼ v1; v2h i= v1j jj j‖v2‖

To estimate the null distribution, we randomly sampled 10,000 characteristic direc-

tions and computed the cosine distance between sampled characteristic directions and

the targeted disease characteristic direction. We found the empirical distribution is

roughly bell-shape but slightly skewed. We thus used the average and standard de-

viation of this empirical distribution to normalize cosine distance. We call a LINCS hit

if the absolute value of the normalized cosine distance from a given gene-perturbed

characteristic direction to a target disease characteristic direction is larger than 1.96.

Multiple testing correction

We used the Holm-Sidak method to correct the family-wise error rate when required.

Specifically:

1. When testing the association of disease and component we corrected the number

of components tested in each tissue.

2. The LINCS database contains replicates of single-gene perturbation across cell type

and time points. The CREEDS database also contains replicates of disease signa-

tures. We thus corrected for the number of combinations of disease signatures and

gene perturbation signatures when testing whether perturbation of a gene candi-

date could result in producing disease signatures in cell lines.

3. The MGI database may contain several mouse models of the same disease. We

corrected the number of mouse models of each disease when testing whether the

mutation of a gene has been associated with relevant disease in a mouse model.

Results
To determine the weight matrix R, we applied weighted correlation network analysis

(WGCNA) to RNA-seq data from GTEx to infer co-expression modules (Methods).

Among 44 tissues analyzed, we generally detected 213 ± 89 co-expression modules in

one tissue. On average, each component contains 19 genes. In general, the co-

expression modules determined by WGCNA are likely to reflect biological pathways
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and gene functions [20], and we sought to probe if these co-expression modules were

linked to genetics. We compared the co-expression modules to a multi-species co-

expression network, in which the gene-gene interactions are present in multiple species

and assumed to be genetically conserved [37]. Specifically, we formed a network by

enumerating all gene-gene combinations within WGCNA modules and compare it to

the multi-species co-expression network. We found that, for a single tissue, ~ 2%

WGCNA edges are overlapped with the multi-species co-expression network despite

the overlap is very significant (Odds ratios range from 1.45 to 39.87, Supplementary

Table 1). In addition, 23% WGCNA edges, if detected in more than 2 tissues, can be

found in the multi-species co-expression network (Table 1). We also found that con-

nected components formed by WGCNA edges detected in more than 2 tissues carry

clearly defined biological functions, such as ribosomal protein synthesis, ATP synthesis

and structural maintenance of chromosomes (Fig. 2a-d). Overall, these results show

that co-expression models estimated by WGCNA are consistent with biological

knowledge.

We first validated that the associations estimated by Eq. (2) using summary-level data

is consistent with those estimated using individual-level data. To this end, we simulated

gene expressions and the eigen-gene activity from individual genotype data using Pre-

diXcan [38]. 2504 samples were simulated using the genotype data collected in the

1000 Genomes Project [32]. We then randomly selected an eigen-gene component and

used its activity, injected with different level of random noises, as a trait to conduct a

Genome-wide association study. The summary statistics of these SNP correlations was

used as input to compute component associations using Eqs. (1) and (2) and bench-

mark against the associations estimated directly using simulated eigen-gene activity.

The results showed a linear correspondence between associations estimated by

individual-level and summary data (Fig. 3). We confirmed by Kolmogorov–Smirnov test

Table 1 Gene pairs co-expressed in multiple tissues and genetically conserved gene pairs. P-values
report the difference in ratios compared to the one estimated from gene pairs found in one tissue
(bottom row)

# tissues detected # WGCNA edge (n1) # genetically conserved edges (n2) ratio (n2 / n1) p-value

14 1 0 0 0.548

13 1 1 1 8.78 × 10−23

12 7 2 0.286 3.58 × 10−13

11 9 5 0.556 1.68 × 10−58

10 12 4 0.333 1.75 × 10−28

9 19 8 0.420 2.06 × 10− 69

8 28 15 0.536 6.96 × 10− 163

7 33 14 0.424 6.65 × 10− 120

6 43 14 0.326 3.58 × 10− 91

5 75 20 0.267 4.62 × 10− 104

4 180 45 0.25 1.18 × 10− 209

3 495 87 0.176 2.21 × 10− 261

2 3344 218 0.0652 1.96 × 10− 170

1 78,656 817 0.0104 N/A
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that the z-scores from non-causal components followed a normal distribution. These

results show that the proposed method conforms the statistical theory of S-PrediXcan.

Next, we investigated whether the associated components capture biological informa-

tion. We applied our method to GWAS summary statistics of six traits of blood cell

counts [39], including neutrophils, eosinophils, basophils, lymphocytes, monocytes and

red blood cells, to obtain GWAS components of these six traits in the whole blood tis-

sue. The whole blood tissue was selected since all 6 GWAS traits are measured from

blood samples. We then performed cell type enrichment analysis [40] to determine the

relevant cell types using genes from GWAS components. Figure 4 shows the p-values

of the enriched cell types. Genes of GWAS components associated with lymphocyte

counts, basophil counts, and neutrophil counts are enriched in B cells, Myeloid cells,

and the neutrophil-like HL-60 cell line respectively. These results confirmed that our

method could capture gene sets enriched in expected cell types, though we did not ob-

serve a perfect one-to-one correspondence.

Fig. 2 Connected components formed by gene-pairs co-expressed in more than 2 tissues have well-
defined biological functions, such as a ribosome complex, b electron transfer chain, c mini-chromosome
maintenance and d Golgi vesicle transport

Fig. 3 Component associations estimated using GWAS summary (x-axis) are consistent with estimated
using individual-level data (y-axis). Data were simulated as a trait that can be attributed to a randomly
chosen eigen-gene component with 10% (left), 5% (middle) and 2% (right) heritability. Red squares indicate
the z-score of the causal component. We confirmed by Kolmogorov–Smirnov test that the z-scores from
non-causal components (blue points) followed a normal distribution (p = 0.1691, 0.5393 and 0.2542 for 10, 5
and 2% (right) heritability, respectively)
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Last, we investigated the potential of our approach to discover putative therapeutic

gene targets. To this end, it would be valuable to discover targets that might specifically

impact the gene component. We projected the associated components onto Bayesian

networks (BNs) constructed from GTEx [31] data. We ranked BN genes by the odds ra-

tio of overlap between a node’s downstream genes and genes in the GWAS component.

Significance was determined by testing whether the odds ratio is statistically greater

than 1. We applied this approach to four disease phenotypes and discovered 147, 47,

103 and 158 putative gene targets for age-related macular degeneration (AMD),

Crohn’s disease (CD), ulcerative colitis (UC) and rheumatoid arthritis (RA) respectively.

The full list of significant gene targets is provided in Supplementary Tables 2, 3, 4, 5.

With the “omnigenic” point of view [14], we wonder if “core genes” on the gene

regulatory network are better therapeutic targets than “peripheral genes” that dir-

ectly carry genetic variations. Core genes are defined as functional genes that give

rise to phenotypes but are not necessarily carrying genetic variants. Our approach

attempts to capture this subset of genes while we used S-PrediXcan’s results to

represent “peripheral genes” related directly to genetic variations. MGI hits and

LINCS hits are used to measure the possibility of a gene being a therapeutic target.

In Table 2, we reported the ratio of functional genes among all gene candidates

available in each database. Overall, we demonstrated the proposed methods could

select more functional genes than S-PrediXcan that selects genes directly influ-

enced by SNP-level associations. Especially, we observed a higher ratio of MGI hits,

but a comparable rate in LINCS hits, using GWAS components. Among these gene

candidates, 5 of them were targets of known medications (Table 3) listed on Drug-

Bank. TNF, selected by S-PrediXcan from both UC and AMD GWAS summary, is

a target of infliximab, Chloroquine and Etanercept. ALOX5, selected by our ap-

proach as a gene candidate for UC, is a target of Mesalazine. SLOC1A2, FCGR3A

and C1QA, selected by our approach as gene candidates for RA, are also targets of

Fig. 4 GWAS components select cell-specific signatures. Cell type enrichment were used to determine cell
types from genes selected by GWAS component analysis (a) and S-Predixcan (b). Colors indicate –log10(p-
value). Results were generated by CTen web server
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medications for RA such as Etanercept, Hydrocortisone and Ibuprofen. These re-

sults further support the idea that our approach can improve selection of func-

tional gene candidates from a GWAS summary.

Discussion
We investigated a few genes captured by our approach and are both MGI and LINCS

hits. HCK was found to be a gene candidate driving a GWAS component associated

with UC in artery aorta. HCK was previously found to be genetically associated with in-

flammatory bowel disease and predicted as a causal factor that regulates NOD2, IL10

and ALOX5 [41]. Consistent with this, the BN suggests that HCK regulates ALOX5 (Fig. 5a),

whose absence has a protective role in an experimental mouse model of colitis [42].

C1QA was found to be a gene candidate from an AMD-associated component in ad-

renal gland. C1q and the classical complement pathway has been suspected to play a

role in the disease progression induced in retinal degeneration, potentially through

local expression of C1q from subretinal microglia/macrophages that instigates inflam-

masome activation and inflammation [43]. Inspection of the neighborhood on the BN

suggests that C1QA regulates MS4A4A (Fig. 5b), a membrane-spanning protein that is

expressed on macrophage-lineage cells [44, 45].

We also identified PDGFRA as a gene candidate from a RA-associated compo-

nent in stomach. PDGFR has been found to be upregulated in RA synoviocytes

and synovial tissues and may play a role in synoviocyte-driven extracellular matrix

degradation in RA [46]. PDGFR signaling has been shown to be one of potential

Table 3 Gene candidates with known indications. Results are queried from DrugBank

Target Indication Drug

GWAS components + BNs

ALOX5 UC Mesalazine

SLOC1A2 RA Hydrocortisone, Ibuprofen, Indomethacin

FCGR3A RA Etanercept

C1QA RA Etanercept

S-PrediXcan

TNF UC Infliximab

TNF RA Chloroquine, Etanercept, Infliximab

Table 2 In silico validation of gene candidates for four disease phenotypes

AMD CD UC RA

GWAS components + BNs (p1)

LINCS hits 0.059 (3/51) 0.143 (2/14) 0.146 (6/41) 0.326 (17/52)

MGI hits 0.311 (42/135) 0.326 (15/46) 0.361 (35/97) 0.493 (73/148)

S-Predixcan (p2)

LINCS hits 0.093 (5/54) 0.243 (18/74) 0.121 (7/58) 0.237 (22/93)

MGI hits 0.227 (29/128) 0.367 (50/136) 0.269 (28/104) 0.277 (57/206)

p1 – p2

LINCS hits −0.034 −0.1 0.025 0.089

MGI hits 0.084 − 0.047 0.092 0.216***

Numerators represent hits, and denominators represent the number of genes retrieved by GWAS components + BNs or
S-PrediXcan. *** indicates p < 0.001
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mechanisms of immatinib mesylate, a tyrosine kinase inhibitor that reduces activa-

tion of RA synoviocytes [47]. Inspection of the neighborhood on the BN (Fig. 5c)

suggests that PDGFRA regulate LPAR1 which may contribute to development of

arthritis via cellular infiltration [48].

GWAS component analysis provides a complementary viewpoint to genetic mapping.

Instead of locating risk variants, this approach looks for transcriptomic modulation that

is influenced by genetic variants. This added dimension allows interpretation of GWAS

results on pathways more relevant to phenotypes. In contrast to previously developed

techniques, our method detects novel disease-associated components rather than

enriched pathways from databases [49]. In this study, we applied WGCNA to single-

tissue gene expression independently. As our results showed that genes co-expressed in

multiple tissues usually carry well-defined functions, integrating multiple tissues may

improve the construction of co-expression networks, as has been done previously [50].

However, such joint modeling often operates on shared genes across tissues, limiting

its applicability when integrating with S-Predixcan models. Currently our method uti-

lizes WGCNA to estimate co-expression modules in an unsupervised manner. Further

work is required to integrate WGCNA with GWAS summary to construct a disease

centric co-expression network.

The key to GWAS component analysis is its ability to utilize and stack models esti-

mated from the reference genome and tissue-specific gene expression in a principled

way. Combining models is crucial to obtaining a holistic picture of the complex bio-

logical systems underlying diseases [51, 52]. Although comprehensive measurements of

every aspect of these systems would in theory offer a direct solution, such data are gen-

erally lacking. Instead, reference data focused on specific features of systems are accu-

mulating at unprecedented speed. In this study, we combined two models in sequential

order, demonstrating the feasibility of combining co-expression networks with GWAS

associations. In the future, we expect to integrate additional types of functional data

into this framework, and we envision that general approach of combining local models

estimated from various data sources will enable comprehensive characterization of

complex diseases.

Conclusions
Here we describe a hierarchical approach, GWAS component analysis, for detecting

disease-associated components from GWAS summary data. GWAS component analysis

Fig. 5 Downstream genes of selected gene candidates on the Bayesian networks: a HCK in artery aorta, b
C1QA in adrenal gland, and c PDGFRA in adrenal gland. For simplicity, genes more than three steps away
from a gene candidate were excluded
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utilizes correlations of gene expression to further summarize SNP associations into as-

sociations of eigen-gene components. We evaluated GWAS component analysis on

synthetic data and confirmed its consistency with respect to associations estimated

using individual-level data. The application to GWAS of six blood cell counts revealed

enriched cell types that coincide with current knowledge. We further demonstrated

that GWAS component analysis can be used for therapeutics discovery by coupling it

with Bayesian networks. Investigation of selected gene candidates suggests that our in-

tegrated framework can discover functional gene candidates from a GWAS summary.
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