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Abstract
Background: Heart disease is the leading cause of death worldwide. Knowing a gene
expression signature in heart disease can lead to the development of more efficient
diagnosis and treatments that may prevent premature deaths. A large amount of
microarray data is available in public repositories and can be used to identify
differentially expressed genes. However, most of the microarray datasets are composed
of a reduced number of samples and to obtain more reliable results, several datasets
have to be merged, which is a challenging task. The identification of differentially
expressed genes is commonly done using statistical methods. Nonetheless, these
methods are based on the definition of an arbitrary threshold to select the differentially
expressed genes and there is no consensus on the values that should be used.

Results: Nine publicly available microarray datasets from studies of different heart
diseases were merged to form a dataset composed of 689 samples and 8354 features.
Subsequently, the adjusted p-value and fold change were determined and by
combining a set of adjusted p-values cutoffs with a list of different fold change
thresholds, 12 sets of differentially expressed genes were obtained. To select the set of
differentially expressed genes that has the best accuracy in classifying samples from
patients with heart diseases and samples from patients with no heart condition, the
random forest algorithm was used. A set of 62 differentially expressed genes having a
classification accuracy of approximately 95% was identified.

Conclusions: We identified a gene expression signature common to different cardiac
diseases and supported our findings by showing their involvement in the
pathophysiology of the heart. The approach used in this study is suitable for the
identification of gene expression signatures, and can be extended to different diseases.

Keywords: Heart disease, Random forest, Gene expression signature, Microarray data

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-020-00217-8&domain=pdf
http://orcid.org/0000-0003-1957-4947
mailto: olga.oliveira@ua.pt
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Fajarda et al. BioDataMining            (2020) 13:8 Page 2 of 19

Background
Heart disease is the leading cause of death worldwide [1] and in particular in the United
States [2] and Europe [3]. The 2017 Global Burden of Disease estimated that ischaemic
heart disease alone is responsible for approximately 8.93 million deaths globally, which
represents an increase of 22.3% compared to 2007. Hypertensive heart disease, in turn,
is estimated to be responsible for approximately 0.93 million deaths and has increased
by 46.6% compared to 2007 [4]. A thorough understanding of heart disease can lead to
the development of more efficient diagnosis and treatments that may prevent premature
deaths.
A gene expression signature (GES) is a set of genes whose altered expression can dis-

tinguish patients with different conditions, e.g. healthy vs. diseased [5, 6]. GES can be
used for diagnosis, prognosis or prediction of therapeutic response [7] and it can also
assist drug discovery by helping to identify a new potential target [6]. Several studies
identified GESs for specific heart conditions. Barth et al. [8] identified 27 genes that can
distinguish patients with dilated cardiomyopathy from patients with nonfailing hearts.
Kittleson et al. [9] compared the gene expression of hearts from patients with nonis-
chemic and ischemic cardiomyopathy with those from patients with nonfailing hearts.
They identified 257 genes differentially expressed in nonischemic cardiomyopathy and 72
genes in ischemic cardiomyopathy. Tan et al. [10] reported 103 genes that were differen-
tially expressed between failing and nonfailing hearts in patients with end-stage dilated
cardiomyopathy.
Microarray technology is widely used to measure, in a single experiment, the expression

levels of thousands of genes simultaneously [11]. The development of next-generation
sequencing led to the conception of a new technology to measure gene expression, the
RNA-Sequencing (RNA-seq) [12]. Despite the advantages of RNA-seq, microarray tech-
nology continues to be widely used, due to its lower cost and the existence of mature,
reliable and robust processes and analysis tools [13, 14]. Furthermore, as the scientific
community recommends that the data generated should be publicly available [13], sev-
eral repositories were created. The Gene Expression Omnibus (GEO) [15] at the National
Center for Biotechnology Information (NCBI) and the ArrayExpress [16] at the Euro-
pean Bioinformatics Institute (EMBL-EBI) nowadays provide a tremendous amount of
microarray data available for further analysis.
Most microarray datasets are composed of a limited number of samples, and there-

fore, have low statistical power to identify a GES [17]. A way to obtain more reliable
results is by merging microarray datasets from independent studies, since this leads to an
increase of sample size [18]. However, merging microarray datasets is challenging, since
most of the datasets were originated using different platforms measuring the expression
of diverse sets of genes [19]. Furthermore, combining microarray datasets from different
experiments introduces a batch effect to the data. Batch effect is the term used to iden-
tify technical, non-biological, variations introduced in the measurements due to the use
of different processes, protocols and platforms [20]. This technical variation can obscure
and confound true biological variation, leading to erroneous results [21].
GESs are commonly identified using statistical methods. Fold change and statistical

tests like the t test are frequently used methods [22, 23]. The R/Bioconductor [24] soft-
ware package limma [25] is also widely used and is considered one of the best methods to
identify differentially expressed genes in comparison studies [26, 27]. This package imple-
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ments linear models and empirical Bayes methods for microarray data analysis [28]. All
these methods are based on the definition of an arbitrary threshold to select the GES and
there is no consensus as to the values that should be used.
More recently, supervised machine learning algorithms have been applied to identify

differentially expressed genes [29–32]. These algorithms have the leverage to construct a
prediction model that can be applied to classify new samples. However, in a microarray
experiment the number of features (the genes) is substantially higher than the number
of samples and supervised machine learning algorithms can be inefficient when applied
to high-dimensional datasets [33]. One way around the high-dimensional problem is
reducing the number of features before applying supervised machine learning algorithms.
Random forest is a supervised learning algorithm developed by Breiman [34] that con-
structs various decision trees, using for each split a random subset of features, and makes
a prediction by combining the predictions of the different decision trees. It is dependent
on only two tuning parameters, providesmeasures of variable importance and can be used
directly for high-dimensional problems without reducing the number of features [35]. An
empirical comparison of ten supervised learning algorithms performed by Caruana and
Niculescu-Mizil [36] concluded that random forest was one of the algorithms that gave
the best average performance.
The objective of this study was to identify a common GES in heart disease. To achieve

this goal, we first merged nine publicly available microarray datasets from studies of dif-
ferent heart diseases. Then, we randomly divided the merged dataset into a training set
and a test set and repeated this procedure 30 times, obtaining 30 training sets and 30 test
sets. Subsequently, we used the R/Bioconductor software package limma to determine
the adjusted p-value and the fold change for every training set. A set of adjusted p-value
cutoffs combined with a list of different fold change thresholds were used to obtain sev-
eral differentially expressed gene sets. To obtain a GES for every combination of adjusted
p-value and fold change cutoff, we intersected the 30 sets of differentially expressed genes
obtained using the 30 training sets. Afterwards, we evaluated the performance of every
GES, on the 30 test sets, using the random forest algorithm and identified the one which
had the best accuracy in classifying samples from patients with heart diseases and samples
from patients with no heart condition. We identified a set of 62 differentially expressed
genes with a classification accuracy of approximately 95%.

Methods
The methodology used to obtain a GES for heart disease is described in this section, as
well as the functional analysis performed.

Data selection

All the datasets used are publicly available and were downloaded from GEO. The query:
((heart) OR cardio) AND (((disease) OR pathology) OR failure) and the following filter
criteria were used:

• Species: Homo sapiens;
• Sample types: heart tissue;
• Number of samples: more than 23 diseased or control samples (i.e. samples collected

from heart donors with no previous history of heart disease);
• Access to unprocessed data (.cel files).
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Nine gene expression datasets, with the following accession numbers, were selected:
GSE1145 [37], GSE1869 [9], GSE2240 [38], GSE17800 [39], GSE21610 [40], GSE22253
[41], GSE42955 [42], GSE57338 [43] and GSE115574 [44]. A summary of the datasets is
presented in Table 1, where, for each dataset, the platform, the number of samples and
the heart diseases of the diseased samples can be found.
Some original datasets had more samples than those used in this study and the reasons

for excluding some samples are given below.
Data of the original dataset GSE1145 were collected using the Affymetrix Human

Genome U133 Plus 2.0 array (GPL96) and the Affymetrix Human Genome U95 Version 2
array (GPL8300). The seventeen samples of platformGPL8300 were not used in this study
because the gene list of this platform is substantially different from the gene list of the
remaining platforms used. Regarding the dataset GSE2240, we did not use the five sam-
ples of patients which had diabetes mellitus, because this may alter the gene expression
patterns. We also exclude the 30 samples of the original dataset GSE21610 which were
collected after the implementation of a ventricular assist device (VAD), since the use of a
VAD can alter the gene expression patterns.
Concerning the dataset GSE22253, we did not use the 21 samples which have rs1333049

genotype CC, because Pilbrow et. al [41] conclude that the risk allele associated with coro-
nary heart disease is C. Finally, the original dataset GSE115574 is composed of 29 samples
obtained from the left atrial tissue and 30 obtained from the right atrial tissue. Since the
samples obtained from the left and right atrial tissue came from the same patients and
most of the samples from the other datasets were obtained from the left ventricular tissue,
this study only used the samples obtained from the left atrial tissue.

Data pre-processing

Before merging the microarray datasets, the raw data (.cel files) must go through pre-
processing. The raw data of the same platform were merged and we used the oligo

package [45], of the R/Bioconductor software package, which implements the robust mul-

Table 1 Summary of the nine datasets used in this study

Dataset Platform No. of samples (diseased/control) Diseases

GSE1145 GPL570 90 (79/11) Idiopathic dilated cardiomyopathy; ischemic
cardiomyopathy; familial cardiomyopathy;
hypertrophic cardiomyopathy; post-partum
cardiomyopathy ; viral cardiomyopathy

GSE1869 GPL96 25 (25/0) Ischemic cardiomyopathy; nonischemic
cardiomyopathy

GSE2240 GPL96 30 (25/5) Aortic and mitral regurgitation; aortic and
mitral stenosis; dilated cardiomyopathy;
coronary artery disease

GSE17800 GPL570 48 (40/8) Dilated cardiomyopathy

GSE21610 GPL570 38 (30/8) Dilated cardiomyopathy; ischemic
cardiomyopathy

GSE22253 GPL6244 87 (0/87) None

GSE42955 GPL6244 29 (24/5) Dilated cardiomyopathy; ischemic
cardiomyopathy

GSE57338 GPL11532 313 (177/136) Idiopathic dilated cardiomyopathy; ischemic
cardiomyopathy

GSE115574 GPL570 29 (29/0) Severe mitral regurgitation

Total 689 (429/260)
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tichip average (RMA) pre-processing method [46], to perform background correction,
normalization and probe summarization.
The microarrays used in this study are oligonucleotide microarrays and each probe cor-

responds to one or a set of short oligonucleotide sequences. In such arrays a gene can
be represented by multiple sequences, i.e. multiple probes, and the expression measure-
ments of these probes which represent the same gene may be very different [13]. We
decided to remove these conflicting expression measurements, but in order not to sig-
nificantly reduce the number of genes used in the study, we used, as probe identifier, the
GenBank sequence accession identifier, which uniquely identifies a biological sequence.
In Affymetrix Human Genome U133A Array (GPL96) and Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570), a probe is associated with a unique GenBank identifier,
but in Affymetrix Human Gene 1.0 ST Array (GPL6244) and Affymetrix Human Gene
1.1 ST Array (GPL11532) a probe is associated with a list of GenBank identifiers. So,
firstly, for each dataset obtained using platforms GPL96 and GPL570, all the probes cor-
responding to multiple or no GenBank identifier were removed. Concerning the dataset
obtained using platforms GPL6244 and GPL11532, only the lists containing unique Gen-
Bank identifiers were maintained, all other lists being removed. Besides, we assigned to
each GenBank identifier of a list the corresponding expression measurements of that list.
At this stage, we identified the common GenBank identifier across the different plat-

forms and merged the datasets using only these common GenBank identifiers. The
resulting merged dataset has 689 samples and 8354 features (the common GenBank
identifiers).

Feature selection

As observed previously, GESs are commonly identified using statistical methods, but
these methods depend on the definition of an arbitrary threshold to select the GES. The
cutoffs for the adjusted p-value commonly used are 0.01 and 0.05 [47]. Concerning the
fold change, the cutoffs normally used are 1.5 and 2 [48] and between 2 and 3 [13, 23].
In this study, the merged dataset was randomly divided into a training set (70% of the
samples) and a test set (the remaining 30%). This procedure was repeated 30 times and
this way 30 different training sets and 30 different test sets were obtained. Next, the
R/Bioconductor software package limma was used to determine in each training set,
for each feature, the adjusted p-value (adjusted using Benjamini and Hochberg’s method
to control the false discovery rate [49]) and the fold change. In this study, we used the
adjusted p-value and the fold change combined and instead of a threshold, we used a list
of thresholds to identify features which represent differentially expressed genes. Thus for
the adjusted p-value, we used as thresholds the values 0.01 and 0.05 and for fold change,
we used the values within the range 1.5–3, which correspond to log2 fold changes in the
range of 0.585 and 1.585, approximately. In this way we obtained, for each training set,
several sets of features that represent differentially expressed genes. For every combina-
tion of adjusted p-value and fold change cutoff, we intersected the 30 sets of features
obtained using the 30 training set and get a feature set for every combination of adjusted
p-value and fold change cutoff.

Batch effect removal

The gene expression measurements may vary according to biological factors as well as
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non-biological ones, i.e. technical sources of variation, such as the use of different plat-
forms or different processing times [50]. These non-biological variations are also called
the batch effect. Several approaches exist to deal with the batch effect. Nygaard et. al
[51] suggested that, when possible, the batch variable should be included in the statis-
tical analysis. Therefore, when using the limma package we included the platform type
as a covariate. Another approach is to adjust the data for batch effects before using the
dataset and that is what we have done before using the random forest algorithm.We used
the ComBat method [52] implemented in the sva package [53] to batch-adjust the gene
expression data of the merged dataset.

Random forest

The next step after batch-adjustment is to select from the various sets of features the one
with the best predictive accuracy. Accuracy is the fraction of correct predictions and is
determined as Accuracy = Number of correct predictions

Number of prediction made . We used the random forest algo-
rithm to evaluate the predictive accuracy of the various sets of features and implemented
it using the R package caret [54]. Caret’s random forest implementation has two param-
eters that can be fine-tuned, namely the number of trees in the forest (ntree) and the
number of features in the random subset used in each split (mtry). To select the best
parameters for every set of features, we used the training sets and repeated 10-fold cross-
validation. The models were fine-tuned to maximize the accuracy. Combinations of the
following values for each parameter were used:

• ntree: 125, 250, 375, 500, 625, 750, 875, 1000;
• mtry: 2, 3, . . . , n, where n represents the total number of features in a set.

The evaluation of the performance of the tuned models was done using the test
sets. Besides accuracy, other metrics can be used to evaluate the model’s performance,
namely balanced accuracy, specificity, precision, recall or sensitivity, the F1 Score, the
Matthews correlation coefficient (MCC), the area under the ROC (receiver operating
characteristic) curve (AUC) and the area under the precision-recall curve (AUCPR).
These measurements are determined as:

Balanced Accuracy = 1
2

×
(

TP
TP + FN

+ TN
TN + FP

)

Specificity = TN
TN + FP

Precision = TP
TP + FP

Recall = TP
TP + FN

F1 Score = 2 × Precision × Recall
Precision + Recall

MCC = TP × TN − FP × FN√
(TP + FP)(TP +FN)(TN +FP)(TN +FN)

where TP represents the number of diseased samples correctly classified; TN represents
the number of control samples correctly classified; FP represents the number of control
samples wrongly classified as diseased samples; and FN represents the number of diseased
samples wrongly classified as control samples.
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Table 2 Number of GenBank identifiers remaining after the removal of repeated GenBank identifiers

Platform GPL96 GPL570 GPL6244 GPL11532

No. of GenBank identifier 20079 48100 121142 57714

The ROC curve plots the recall as a function of 1-specificity at all classification
thresholds and the AUC is the area under the ROC curve [55].
The precision-recall (PR) curve plots the recall as a function of precision at all classifi-

cation thresholds. PR curves are more accurate in presenting the performance of models
than ROC curves when the datasets used are unbalanced. The AUCPR is also known as
the average precision [56]. Both AUC and AUCPR are summary metrics of the respective
curves.

Functional analysis

To investigate the functional meaning of the genes obtained with our approach, we per-
formed a gene ontology (GO) enrichment analysis on the genes of the selected feature
sets. We analyzed the up-regulated and down-regulated genes separately, using a sta-
tistical over-representation test (Fisher’s exact, False Discovery Rate correction) in the
PANTHER Classification System 1 [57]. Next, we obtained the networks of protein-
protein interactions (PPIs) of the up-regulated and down-regulated genes from the gene
set with the best overall results. We used the STRING database 2 [58], and searched
for data from text-mining, experiments, databases and co-expression, with a default
median confidence level. Finally, we retrieved information from the DisGeNet database 3

[59] to assess which genes had previously been associated with disease, specifically
cardiac-related diseases. From the file with all gene disease associations (GDA), we fil-
tered “diseaseSemanticType” by “Disease or Syndrome” and then “diseaseName” by all
containing “cardio*” or “cardiac” or “heart”.

Results
To identify a GES common in heart disease by merging microarray studies, we used a
methodology composed of several steps. The first step consisted of identifying the studies
tomerge.We identified 9 datasets, whose data were obtained using four differentmicroar-
ray platforms. Using different platforms involves pre-processing of the datasets before
they can be merged. We used the GenBank accession identifier to identify the probes
and exclude the probes corresponding to multiple or no GenBank identifier. Table 2
presents the number of GenBank identifiers remaining in each dataset, according to the
corresponding platform.
In platforms GPL6244 and GPL11532, the number of unique GenBank identifiers

is higher than in the other platforms because in these two platforms the probes are
associated with a list of GenBank identifiers.
Before merging the datasets we determined the common GenBank identifier across the

four platforms. Figure 1 presents a Venn diagram of the common GenBank identifier
across the four platforms. The four platforms have 8354 GenBank identifiers in common

1http://pantherdb.org, Version 15.0
2https://string-db.org, Version 11.0
3https://www.disgenet.org, Version 6.0

http://pantherdb.org
https://string-db.org
https://www.disgenet.org
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Fig. 1 Venn diagram of common GenBank identifiers. The Venn diagram presents the overlap of GenBank
identifiers across the four microarray platforms: GPL96, GPL570, GPL6244 and GPL11532

and all the probes not corresponding to these GenBank identifiers were removed from
the nine datasets.
As can be observed in Fig. 1, platforms GPL6244 and GPL11532 are more similar to

each other than to the other two, having 51031GenBank identifiers in common. Platforms
GPL96 and GPL570 are alsomore similar to each other, having 19948 GenBank identifiers
in common.
After merging the various datasets to form a common dataset with 689 samples and

8354 features, we randomly divided the merged dataset into a training set and a test set
and repeated this procedure 30 times, obtaining 30 different training and 30 different
test sets. Then, we used the R/Bioconductor software package limma to obtain several
sets of features for every training set. To get a unique feature set for every combination
of adjusted p-value and fold change cutoff, we intersect the 30 features sets obtained
using the 30 training sets. We observed that for a fold change within the range 1.5–3, we
obtained the same sets of features using a cutoff for the adjusted p-value of 0.01 and of
0.05. Additionally, for fold changes within the range 2.7–3 the features sets had a very
small number of genes (less than five) and therefore we choose not to use these feature
sets.
For each fold change threshold used and a p-value of 0.01 we obtained a set of different

features, resulting in a total of 12 different sets. As the fold change threshold increases,
the number of features decreases. So for a fold change cutoff of 1.5 we obtained a set of
95 features and for a fold change cutoff of 2.6 we obtained a set of 7 features.
To evaluate the predictive accuracy of each set of features we used the random forest

algorithm. However, before applying the random forest algorithm, a batch-adjustment to
the data was required. Figure 2 presents themultidimensional scaling (MDS) plot showing
the distribution of the merged dataset before and after the batch-adjustment. As can be
observed before the batch-adjustment there are four clusters corresponding to the four
platforms which disappear after the batch-adjustment.
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Fig. 2 MDS plot before and after batch-adjustment. MDS was performed using the 689 samples of the
merged dataset. Before batch-adjustment four clusters of samples driven by the four platforms can be
observed. After batch-adjustment no cluster can be observed

The parameters ntree and mtry of the random forest were fine-tuned using a set of
different values and using the training sets. To evaluate the performance of the tuned
models we used the test sets.
Table 3 presents for each set of features, the number of features, the correspondent

number of genes, the mean and the 95% confidence interval (95%-CI) of the accuracy and
balanced accuracy of the model when applied to the test sets.
Table 4 presents for every set of features the mean and the 95% confidence interval of

the specificity, precision, and recall for the model when applied to the test sets. Table 5
presents the mean and the 95% confidence interval of the F1 score, the MCC, and the
mean and the 95% confidence interval of the AUC and the AUCPR are presented in
Table 6.

Table 3 For every fold change, the number of features, the number of genes, the accuracy and the
balanced accuracy of the classifier

Fold change No. of features No. of genes Accuracy Balanced Accuracy

mean 95%-CI mean 95%-CI

1.5 95 90 0.9468 (0.9409, 0.9526) 0.9382 (0.9311, 0.9454)

1.6 65 62 0.9492 (0.9439, 0.9545) 0.9407 (0.9341, 0.9472)

1.7 48 46 0.9476 (0.9419, 0.9532) 0.9388 (0.9318, 0.9458)

1.8 31 29 0.9474 (0.9419, 0.9530) 0.9388 (0.9321, 0.9456)

1.9 23 21 0.9461 (0.9404, 0.9518) 0.9375 (0.9309, 0.9442)

2.0 20 18 0.9426 (0.9365, 0.9487) 0.9337 (0.9266, 0.9409)

2.1 16 14 0.9424 (0.9363, 0.9485) 0.9336 (0.9265, 0.9407)

2.2 14 12 0.9416 (0.9350, 0.9481) 0.9326 (0.9252, 0.9401)

2.3 13 11 0.9388 (0.9320, 0.9457) 0.9294 (0.9216, 0.9372)

2.4 10 9 0.9309 (0.9245, 0.9373) 0.9221 (0.9152, 0.9290)

2.5 8 7 0.9299 (0.9222, 0.9377) 0.9215 (0.9133, 0.9297)

2.6 7 6 0.9293 (0.9217, 0.9368) 0.9211 (0.9131, 0.9290)
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Table 4 For every fold change the mean and the 95% confidence interval of the specificity,
precision, and recall of the classifier

Fold change
Specificity Precision Recall

mean 95%-CI mean 95%-CI mean 95%-CI

1.5 0.9030 (0.8894, 0.9166) 0.9432 (0.9357, 0.9507) 0.9734 (0.9685, 0.9784)

1.6 0.9056 (0.8927, 0.9184) 0.9447 (0.9376, 0.9519) 0.9758 (0.9714, 0.9801)

1.7 0.9026 (0.8889, 0.9162) 0.9431 (0.9355, 0.9506) 0.9750 (0.9706, 0.9794)

1.8 0.9034 (0.8905, 0.9164) 0.9434 (0.9363, 0.9506) 0.9742 (0.9694, 0.9790)

1.9 0.9021 (0.8901, 0.9142) 0.9426 (0.9359, 0.9492) 0.9729 (0.9676, 0.9782)

2.0 0.8974 (0.8843, 0.9106) 0.9399 (0.9327, 0.9471) 0.9701 (0.9646, 0.9755)

2.1 0.8974 (0.8846, 0.9102) 0.9398 (0.9328, 0.9469) 0.9698 (0.9641, 0.9755)

2.2 0.8957 (0.8823, 0.9091) 0.9389 (0.9316, 0.9463) 0.9695 (0.9627, 0.9764)

2.3 0.8906 (0.8771, 0.9041) 0.9360 (0.9285, 0.9434) 0.9682 (0.9620, 0.9745)

2.4 0.8859 (0.8735, 0.8983) 0.9328 (0.9260, 0.9396) 0.9583 (0.9500, 0.9667)

2.5 0.8868 (0.8738, 0.8997) 0.9330 (0.9257, 0.9403) 0.9563 (0.9476, 0.9649)

2.6 0.8872 (0.8743, 0.9000) 0.9332 (0.9261, 0.9404) 0.9549 (0.9456, 0.9643)

As can be observed in Tables 3, 4, 5, and 6 the feature set obtaining the best mean
accuracy (approximately 95%), mean specificity, mean precision, mean F1 score, mean
MCC, mean AUC and mean AUCPR is the one using a fold change cutoff of 1.6.
The feature set using a fold change cutoff of 1.6 is composed of 65 GenBank identifiers

which correspond to 62 genes. 37 are up-regulated (fold change > 1.6) in heart disease
and 25 of these genes are down-regulated (fold change < 1

1.6 � 0.625).
Table 7 presents the 37 up-regulated genes from the feature set obtained using a fold

change cutoff of 1.6, as well as the respective mean adjusted p-value, themean fold change
and the mean variable importance obtained. Table 8 presents the 25 down-regulated
genes along with the respective mean adjusted p-value, the mean fold change and the
mean variable importance obtained. The mean adjusted p-values and the mean fold
changes presented in Tables 7 and 8 were obtained by averaging the values obtained
using the 30 training sets. The variable importances are determined by measuring the
mean decrease accuracy using the out-of-bag samples. Variables with a larger importance
measurement are more important for classification [60]. The mean variable importances

Table 5 For every fold change the mean and the 95% confidence interval of the F1 score and MCC
of the classifier

Fold change
F1 Score MCC

mean 95%-CI mean 95%-CI

1.5 0.9579 (0.9534, 0.9625) 0.8869 (0.8744, 0.8994)

1.6 0.9599 (0.9557, 0.9640) 0.8921 (0.8808, 0.9034)

1.7 0.9586 (0.9542, 0.9630) 0.8887 (0.8767, 0.9007)

1.8 0.9584 (0.9541, 0.9628) 0.8883 (0.8766, 0.9001)

1.9 0.9574 (0.9529, 0.9619) 0.8855 (0.8733, 0.8976)

2.0 0.9546 (0.9498, 0.9593) 0.8779 (0.8649, 0.8908)

2.1 0.9544 (0.9496, 0.9592) 0.8775 (0.8646, 0.8905)

2.2 0.9538 (0.9486, 0.9590) 0.8760 (0.8622, 0.8898)

2.3 0.9517 (0.9463, 0.9571) 0.8699 (0.8554, 0.8845)

2.4 0.9451 (0.9399, 0.9503) 0.8533 (0.8397, 0.8669)

2.5 0.9443 (0.9381, 0.9505) 0.8511 (0.8347, 0.8674)

2.6 0.9437 (0.9376, 0.9498) 0.8499 (0.8339, 0.8660)
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Table 6 For every fold change the mean and the 95% confidence interval of the AUC and the AUCPR
of the classifier

Fold change
AUC AUCPR

mean 95%-CI mean 95%-CI

1.5 0.9391 (0.9322, 0.9459) 0.9392 (0.9321, 0.9462)

1.6 0.9407 (0.9341, 0.9472) 0.9402 (0.9332, 0.9473)

1.7 0.9388 (0.9318, 0.9458) 0.9384 (0.9310, 0.9459)

1.8 0.9388 (0.9321, 0.9456) 0.9387 (0.9316, 0.9458)

1.9 0.9375 (0.9309, 0.9442) 0.9376 (0.9309, 0.9443)

2.0 0.9337 (0.9266, 0.9409) 0.9344 (0.9272, 0.9416)

2.1 0.9336 (0.9265, 0.9407) 0.9348 (0.9276, 0.9420)

2.2 0.9326 (0.9252, 0.9401) 0.9334 (0.9259, 0.9408)

2.3 0.9795 (0.9734, 0.9856) 0.9042 (0.8842, 0.9242)

2.4 0.9221 (0.9152, 0.9290) 0.9253 (0.9186, 0.9320)

2.5 0.9215 (0.9133, 0.9297) 0.9252 (0.9176, 0.9328)

2.6 0.9211 (0.9131, 0.9290) 0.9251 (0.9178, 0.9324)

presented in Tables 7 and 8 were obtained by averaging the values obtained using the 30
test sets.
As can be observed in Tables 7 and 8, the values of the adjusted p-value are greatly

reduced, with 4.5375 × 10−05 being the highest value.
It is worth noticing that the feature set obtained using a fold change cutoff of 2.6 still

achieves an accuracy of approximately 93%. This set is composed of 7 GenBank identifiers
which correspond to 6 genes. 3 genes are up-regulated (ASPN, SFRP4 and NPPA) and
3 are down-regulated (CD163, IL1RL1 and SERPINA3). We can, also, observe that in
Table 7 the mean fold change of gene EIF1AY is higher than 2.6 and that in Table 8 the
mean fold changes of genes FCN3 and PLA2G2A are lower than 1

2.6 . However, these genes
are not included in the feature set obtained using fold change 2.6 since it is sufficient that
a gene is not included in one of the thirty feature sets obtaining using the thirty training
sets, to be excluded from the intersection set. We analyzed the thirty feature sets and
observed that in four of them gene EIF1AY had a fold change lower than 2.6, in fourteen
of them and in three of them genes FCN3 and PLA2G2A, respectively, had a fold change
greater than 1

2.6 .
To further analyze the feature sets obtained using a fold change cutoff of 1.6, we per-

formed a GO analysis on the up-regulated and down-regulated genes (see Fig. 3 and
Additional file 1). Using the PANTHER GO-slim annotation datasets, we observed that
the up-regulated genes had the same result, for both the molecular function and the
biological process categories, which was related to theWnt signaling pathway. The down-
regulated genes had no statistically significant results. Using the PANTHER complete
annotation datasets, we observed an enrichment in up-regulated genes in processes
related to tissue regeneration and development and with structural components from the
extracellular matrix. The complete results of the GO analysis are presented in Fig. 3 (see
Additional file 1 for details on the fold enrichment and FDR values).
To construct the PPI networks, we considered the up-regulated genes from the feature

set with a fold change cutoff of 1.6, comprised of 37 genes. The genes DDX3Y, EIF1AY,
KDM5D, RPS4Y1, UPS9Y andUTY had no proteinmatch on STRING andwere excluded.
Out of the 31 proteins found and using only the queried proteins, we retrieved a final
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Table 7 Common up-regulated genes in heart disease obtained when using a fold change cutoff of
1.6

Gene Symbol GenBank identifier Adjusted p-value Fold change Variable importance

ASPN NM_017680 9.8581 × 10−39 3.1542 3.0923

CRYM NM_001888 1.1463 × 10−24 1.7969 3.2103

DDX3Y NM_004660 1.3868 × 10−05 2.1572 1.6515

DSC1 NM_004948 3.0749 × 10−14 2.0620 1.7366

ECM2 NM_001393 5.1541 × 10−41 2.1289 3.9118

EIF1AY NM_004681 1.8035 × 10−06 3.0338 1.9761

FMOD NM_002023 2.4210 × 10−18 1.8844 3.313

FRZB NM_001463 3.4459 × 10−43 2.5309 4.0964

GATM NM_001482 1.9088 × 10−23 1.9125 2.4652

HAPLN1 NM_001884 1.6750 × 10−14 1.7568 1.4900

IFI44L NM_006820 2.5184 × 10−26 1.9858 3.031

ISLR NM_005545 6.5434 × 10−39 1.8439 7.1403

ITIH5 NM_030569 1.4377 × 10−41 1.7718 4.1672

KDM5D NM_004653 5.4325 × 10−07 1.9162 1.3922

LRRC17 NM_005824 7.9437 × 10−18 1.7555 2.2458

LTBP2 NM_000428 2.7206 × 10−20 1.9063 4.0368

LUM NM_002345 7.7796 × 10−39 2.3008 4.9349

MATN2 NM_002380 2.6707 × 10−18 1.7430 0.6137

MME NM_007287 3.4768 × 10−28 1.8158 3.1662

MNS1 NM_018365 3.1674 × 10−41 1.9615 8.5390

MXRA5 AF245505 5.9001 × 10−25 2.2967 3.4605

NAP1L3 NM_004538 4.7889 × 10−15 1.8298 1.9093

NPPA M30262 4.5989 × 10−12 3.4108 4.9190

OGN NM_014057 1, 5746 × 10−28 2.4848 3.2359

OMD NM_005014 1.2118 × 10−20 1.9088 2.0563

PDE5A NM_001083 1.7283 × 10−31 1.9547 7.1236

PROM1 NM_006017 6.1354 × 10−18 1.8225 1.7519

PTN BC005916 1.7766 × 10−24 1.8927 2.3117

RASL11B NM_023940 3.6655 × 10−21 1.8148 3.0627

RPS4Y1 NM_001008 4.5375 × 10−05 1.9747 1.0981

SFRP1 NM_003012 6.8682 × 10−22 2.2164 2.8539

SFRP4 NM_003014 6.1063 × 10−40 2.8962 5.9620

STAT4 NM_003151 3.0232 × 10−17 2.1129 4.0354

THBS4 NM_003248 1.9041 × 10−13 1.8075 1.3539

TLL2 NM_012465 1.9225 × 10−32 1.7020 3.1669

USP9Y NM_004654 1.2498 × 10−08 2.3565 3.8957

UTY AF000994 8.8337 × 10−07 1.8757 2.8492

UTY NM_007125 6.5398 × 10−07 1.8808 2.8435

network, with 17 nodes (proteins) and 25 edges (interactions), which is shown in Fig. 4.
Among the 17, eleven proteins had more than one interaction and 2 were still present
in the feature set with a fold change cutoff of 2.6. For the 25 down-regulated genes, we
obtained a final network with 15 nodes and 21 interactions (Additional file 2). We found
that 10 proteins had more than one interaction.
As a final functional validation step, we used the DisGeNet database to evaluate the

disease association status of the genes. We found a total of 7351 associations between
2757 genes and 241 diseases. From the 62 genes of the feature set with a fold change cutoff
of 1.6, twenty-four genes were found to be associated with heart related diseases (see
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Table 8 Common down-regulated genes in heart disease obtained when using a fold change cutoff
of 1

1.6

Gene Symbol GenBank identifier Adjusted p-value Fold change Variable importance

ALOX5AP NM_001629 2.4434 × 10−22 0.5147 2.1998

ANKRD2 NM_020349 9.1377 × 10−15 0.5051 2.4536

ANPEP NM_001150 8.1714 × 10−23 0.5709 1.7386

AOX1 NM_001159 6.0757 × 10−18 0.5363 2.5075

CD14 NM_000591 8.2159 × 10−20 0.5454 5.6363

CD163 NM_004244 8.6407 × 10−36 0.2996 4.7795

CD163 Z22970 2.0766 × 10−36 0.3315 4.1402

CD53 NM_000560 1.7938 × 10−15 0.5862 2.1460

CTSC NM_001814 7.2224 × 10−18 0.5549 2.8080

ETNPPL NM_031279 5.0566 × 10−12 0.5824 5.701

F13A1 NM_000129 5.1104 × 10−15 0.5540 3.0357

FCER1G NM_004106 1.2145 × 10−19 0.5216 3.0903

FCN3 NM_003665 1.4659 × 10−40 0.3841 6.3081

HMGCS2 NM_005518 2.9399 × 10−08 0.5035 1.8650

IL1R2 NM_004633 3.0359 × 10−22 0.5477 2.2061

IL1RL1 AB012701 2.5061 × 10−29 0.3773 3.5570

IL1RL1 NM_003856 3.5562 × 10−36 0.3192 2.8270

LMCD1 NM_014583 1.2320 × 10−14 0.5711 2.2943

MYOT NM_006790 2.4705 × 10−22 0.4674 2.5393

PLA2G2A NM_000300 1.1862 × 10−17 0.3579 1.8016

PLIN2 BC005127 3.3583 × 10−25 0.5383 4.2095

PTX3 NM_002852 4.2469 × 10−09 0.5383 0.7522

RNASE2 NM_002934 1.0328 × 10−31 0.5119 3.0843

S100A8 NM_002964 8.1619 × 10−12 0.4876 1.5052

SERPINA3 NM_001085 5.0459 × 10−71 0.1907 13.2424

SERPINE1 NM_000602 9.2699 × 10−18 0.3793 1.3912

VSIG4 NM_007268 4.5242 × 10−33 0.4330 3.6720

Additional file 3). From these 24 genes, five were also in the feature set with a fold change
cutoff of 2.6.

Discussion
In this study, nine microarray datasets were merged in order to identify a GES common to
different heart diseases. The term “heart diseases” is often incorrectly used as a synonym
of cardiovascular diseases. According to the World Health Organization, as published in
the “Global atlas on cardiovascular disease prevention and control” [61], cardiovascular
diseases include diseases of the heart, vascular diseases of the brain and diseases of blood
vessels. In our study, we focused on heart diseases that affect the structure of the organ
(muscle and valves), leaving out all types of vascular diseases, as well as diseases that
affect the function or rhythm of the heart (arrhythmias). As depicted in Table 1, the data
sets analyzed included different types of cardiomyopathies (diseases of the heart muscle)
and diseases of the heart valves, which are often grouped under the term “structural heart
diseases”. Genes expressed in atrial and ventricular myocardial tissues from failing and
non-failing hearts were analyzed. After applying the methodology described above, we
obtained a set of 62 genes with altered expression levels by a fold change cutoff of 1.6,
which best discriminates diseased from control samples. To evaluate the performance of
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Fig. 3 Gene Ontology significant results. Gene Ontology significant results of the up-regulated genes from
the gene set with a fold change of 1.6, showing biological process (blue) and molecular function (orange)

the model we used 30 tests sets. Besides this approach, we also evaluated the leave one
study out procedure, where the datasets of 8 of the 9 studies are used for selecting the
differentially expressed genes and training the model, and the dataset of the remained
study is used to evaluate the model’s performance. This process was repeated nine times
so that the dataset of each study is once used for independent evaluation. However, the
results obtained were over-optimistic, making this procedure unfeasible for our study.
To explore the biological meaning of the results, we performed a functional analysis

comprised of GO analysis and PPIs network. Our goal was to understand if the function
of the genes obtained was relevant in heart disease and therefore validate our approach to
obtain a GES.
The GO analysis of the up-regulated genes revealed an over-representation of several

biological processes and molecular functions related to the development of heart tis-
sue and cardiac remodeling after injury (see Fig. 3 and Additional file 1), specifically the

Fig. 4 Protein-protein interactions of up-regulated protein coding genes. a Protein-protein interactions of
the up-regulated protein coding genes from the feature set with fold change cutoff of 1.6, was retrieved from
STRING database, resulting in a network of 25 edges between 17 nodes. Each node represents one protein
and the edges represent the interactions. The line thickness indicates the strength of data support (text
mining, experiments, databases and co-expression were selected from the options), with a default median
level of confidence. b The number of interactions of the nodes with more than one interaction is represented
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involvement of the keratan sulfate metabolic process, which will be discussed later. Inter-
estingly, enrichment in genes that code for proteins involved in the Wnt protein binding
and in the regulation of the Wnt signaling pathway was a result highlighted by the PAN-
THER GO-slim annotation datasets, which are selected by curation. The Wnt-protein is
a secreted growth factor involved in signaling. The Wnt signaling pathway, mostly via
the beta-catenin pathway, also known as the canonical pathway, has a well-known role in
cell proliferation and cell differentiation in tissue development and homeostasis [62]. The
role of this pathway in the context of cardiovascular disease has been recently reviewed
by Foulquier et. al. [63]. Specifically, the role of screted frizzled-related proteins (SFRPs),
which are a family of Wnt modulators, has been studied in this context [64], but remains
largely unknown. Considering the down-regulated genes, most of the results are related
to the immune system and inflammatory processes. Though the primary event of heart
tissue damage is an inflammatory response, the cardiac repair is dependent on the sup-
pression of inflammation to ensure the formation of a scar in the post-infarction response
[65–67]. The down-regulation of genes involved in immune and inflammatory response
had been observed in a similar study in dilated cardiomyopathy [8].
Next, we obtained a network of PPIs from the STRING database, using the 37 up-

regulated genes from the feature set with a fold change cutoff of 1.6 (Fig. 4).We considered
that the analysis of the up-regulated genes could be more interesting from the clinical
point of view. The analysis of the PPIs network constructed with the down-regulated
genes (Additional file 2) showed that the proteins with more interactions were mostly
involved in processes related to both the inflammatory response and the immune system
(FCER1G, CD14, CD163, and S100A8), which is in agreement with the GO results.
Among the proteins with the highest number of interactions in the up-regulated genes

network, we found ASPN and NPPA, which are also found in the smallest feature set with
a fold change cutoff of 2.6.
Natriuretic Peptide Precursor A (NPPA) gene encodes the precursor for the hormone

atrial natriuretic peptide (ANP). ANP is synthesized and secreted by cardiac muscle cells
from the atria in the heart and is a well-established biomarker for cardiovascular disease
[68]. According to a recent review [69], it plays a key role in the regulation of cardiovas-
cular volume and pressure homeostasis by inducing natriuresis, diuresis and vasodilation.
Over the last four decades, studies have shown that the phenotype associated with NPPA
genetic variants and the changes in the circulating levels of ANP reflect its value as a
potential therapeutic target for cardiometabolic diseases, including heart failure [70, 71].
Therefore, adding to our study, NPPA gene has been previously identified in GES of
cardiac diseases, such as heart failure [72] and dilated cardiomyopathy [8, 73].
Asporin, encoded by ASPN gene, is a glycoprotein from the family of the small leucine

rich proteoglycans (SLRP) present in the cartilage tissue. It is a known negative regula-
tor of osteoblast differentiation and might be involved in development of the heart valves
[74], being among the structural and extracellular matrix proteins that have putative roles
in mitral valve degeneration [75]. Nevertheless, to our knowledge, only a few studies have
found an alteration in ASPN gene expression in the context of cardiovascular diseases. In
the two studies performed in humans [8, 75], its importance has not been properly dis-
cussed. A very recent study performed in mice by Wang et. al.[76] has reported ASPN
among the up-regulated genes in a GES of cardiac remodeling. Following those studies,
we have identified ASPN as one of the most significant genes altered in heart disease,
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since it was found among the highest fold change cutoff used and prominent in the PPI
network. Together with another group of four proteins from the SLRP family, namely
fibromodulin (FMOD), osteomodulin (OMD), osteoglycin (OGN) and lumican (LUM),
the importance of extracellular remodeling processes in heart disease is emphasized.
These FMOD, OMD, OGN and LUM proteins, also underlined by the PPIs network,
are involved in keratan sulfate metabolic, catabolic and biosynthetic processes. Keratan
sulfate is a glycosaminoglycan, a structural molecule, mostly found in the extracellular
matrix. Keratan sulfate metabolism is involved in the development of heart tissue and has
been implicated in heart disease. FMOD and LUM, for example, are increased in heart
failure as a response to inflammation and play a role in cardiac remodeling [77, 78]. The
findings highlighted by the PPIs network analysis agree with the GO analysis, where the
biological processes of the biosynthesis and catabolism of the keratan sulfate was one of
the main results.
After the functional study using GO and PPIs network analysis, we searched the

DisGeNet database and found that approximately 39% of the genes studied had previ-
ously been associated with cardiac-related diseases, including NPPA, SERPINA3, SFRP4,
IL1RL1 and CD163, still present in the feature set with a fold change cutoff of 2.6. This
final observation strongly validates our results.

Conclusion
With this study, we were able to successfully identify a GES common to different cardiac
diseases, mainly structural heart diseases, and supported our findings by showing their
involvement in the pathophysiology of the heart.
According to our findings and given its structural function, we suggest that asporin is

likely to be involved in a cardiac tissue mechanism that is up-regulated in response to
disease development, rather than having a causal effect. Although this has not yet been
demonstrated, it should be further studied.
Regardless of advantages of having a GES, we also consider here that having a small set

of markers to distinguish normal from diseased samples can ease their use as a panel for
diagnosis or screening. Additionally, such genes can be further investigated in the context
of new therapeutic approaches.
Finally, the approach used in this study is suitable for the identification of gene

expression signatures and can be extended to different diseases.
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44. Deniz GC, Durdu S, Özdaǧ, Akar RA. Gene expression data from human left and right atrial tissues in patients with
degenerative MR in SR and AFib. Stem Cell Inst NCBI Gene Expr Omnibus. 2019.

45. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):
2363–7.

https://doi.org/10.2202/1544-6115.1027


Fajarda et al. BioDataMining            (2020) 13:8 Page 19 of 19

46. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and
summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

47. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100(16):9440–5.
48. Zhao B, Erwin A, Xue B. How many differentially expressed genes: A perspective from the comparison of genotypic

and phenotypic distances. Genomics. 2018;110(1):67–73.
49. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.

J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.
50. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. Tackling

the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733.
51. Nygaard V, Rødland EA, Hovig E. Methods that remove batch effects while retaining group differences may lead to

exaggerated confidence in downstream analyses. Biostatistics. 2016;17(1):29–39.
52. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes

methods. Biostatistics. 2007;8(1):118–27.
53. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other

unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.
54. Kuhn M, et al. Building predictive models in r using the caret package. J Stat Softw. 2008;28(5):1–26.
55. Cortes C, Mohri M. Auc optimization vs. error rate minimization. In: Advances in Neural Information Processing

Systems. Cambridge: MIT Press; 2004. p. 313–20.
56. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The binormal assumption on precision-recall curves. In: 2010

20th International Conference on Pattern Recognition. New Jersey: IEEE; 2010. p. 4263–6.
57. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. Panther version 14: more genomes, a new panther go-slim

and improvements in enrichment analysis tools. Nucleic Acids Res. 2018;47(D1):419–26.
58. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P,

et al. String v11: protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2018;47(D1):607–13.

59. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The disgenet knowledge
platform for disease genomics: 2019 update. Nucleic Acids Res. 2019;48(D1):845–55.

60. Archer KJ, Kimes RV. Empirical characterization of random forest variable importance measures. Comput Stat Data
Anal. 2008;52(4):2249–60.

61. Mendis S, Puska P, Norrving B, Organization WH, et al. Global Atlas on Cardiovascular Disease Prevention and
Control. Geneva: World Health Organization; 2011.

62. Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):146589.
63. Foulquier S, Daskalopoulos EP, Lluri G, Hermans KC, Deb A, Blankesteijn WM. Wnt signaling in cardiac and vascular

disease. Pharmacol Rev. 2018;70(1):68–141.
64. Huang A, Huang Y. Role of sfrps in cardiovascular disease. Ther Adv Chronic Dis. 2020;11:2040622320901990.
65. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and

inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204.
66. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.
67. Sattler S, Fairchild P, Watt FM, Rosenthal N, Harding SE. The adaptive immune response to cardiac injury—the true

roadblock to effective regenerative therapies?. NPJ Regen Med. 2017;2(1):19.
68. Dhingra R, Vasan RS. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart

failure biomarkers. Trends Cardiovasc Med. 2017;27(2):123–33.
69. Cannone V, Cabassi A, Volpi R, Burnett JC. Atrial natriuretic peptide: A molecular target of novel therapeutic

approaches to cardio-metabolic disease. Int J Mol Sci. 2019;20(13):3265.
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