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Editorial
Ensemble techniques—wherein a model is composed of multiple (possibly) weaker
models—are prevalent nowadays within the field of machine learning (ML). Well-known
methods such as bagging [1], boosting [2], and stacking [3] are MLmainstays, widely (and
fruitfully) deployed on a daily basis. Generally speaking, there are two types of ensem-
ble methods, the first generating models in sequence—e.g., AdaBoost [2]—the latter in a
parallel manner—e.g., random forests [4] and evolutionary algorithms [5].
AdaBoost (Adaptive Boosting) is an ML meta-algorithm that is used in conjunction

with other types of learning algorithms to improve performance. The output of so-called
“weak learners” is combined into a weighted sum that represents the final output of the
boosted classifier. Adaptivity is obtained by tweaking subsequent weak learners in favor of
those instances misclassified by previous classifiers. The maximum number of estimators
at which boosting is terminated is a free parameter that has to be carefully set by the user.
The popular Scikit-learn Python package, used extensively within the ML community,
sets this default value to 50 [6].
A random forest is an ensemble learning method that operates by constructing a mul-

titude of decision trees at training time and then outputting the majority class (for
classification problems) or mean prediction (for regression problems) of the individual
trees. The number of trees is a free parameter set by the user; the default Scikit-learn
value is 100 (up from 10 in past versions) [6].
An evolutionary algorithm is a population-based approach that inherently produces a

cornucopia of models over generations of evolution. Most often one seeks a single, final
model (or a Pareto set of models, when multiple objectives are sought). Yet, as eloquently
suggested by [7] in their paper’s title, might we not obtain “Ensemble learning for free
with evolutionary algorithms?” They proposed evolutionary ensemble learning, which
extracts an ensemble either from the final population only or incrementally during evo-
lution. Recently, [8] focused on genetic programming—wherein the individuals evolved
are computational trees—introducing an ensemble coevolutionary algorithm that main-
tains two subpopulations, trees and forests, with the output model being a forest built as
an ensemble of trees.
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The number of models within an ensemble—the ensemble size—greatly impacts per-
formance, yet there seems to be a dearth of studies addressing this issue. One recent
theoretical study suggested that there is an ideal ensemble size under certain assump-
tions [9]. In practice, the ensemble size is set to some default value, or attempts are made
to optimize this value either through a-priori, hyperparameter tuning or through online,
dynamic sizing. And beyond ensemble approaches, any ML technique we employ is, in
practice, run multiple times, producing a deluge of models.
We propose herein a different outlook altogether, seeking not an optimal ensemble size,

but asking what might be accomplished if one is in possession of numerous models, either
as an inherent part of the learning process, or simply due to many independent runs.
What we propose is simple in nature: Why not save—and possibly make use of—all the

models? In a nod toward “save the trees” we designate this idea as conservation machine
learning. Since we are expending considerable effort on producing models galore and
evermore, why should we consign the vast majority of them to oblivion? Instead of con-
sidering most models as “failed” attempts along the way to a glorious winner, we look
upon all as partial successes, possibly to be used beneficially at some future point.
Quite likely we shall end up with a large jungle of models rather than a small forest, a sit-

uation which may well require new thinking into the design of the ultimate answer to the
problem at hand. In some cases, using classical approaches—e.g., majority voting (classi-
fication) or averaging (regression)—over the entire jungle might yield a good answer. In
other cases we propose that the jungle could be cultivated, producing a garden of select
models. Cultivation methods could be simple: select only models that meet certain crite-
ria, or iteratively select models that improve performance; cultivation could also be more
sophisticated, unleashing the full might of ML to produce meritorious gardens.
We are delving into new territory, advocating, as we were, sizeable ensembles. We

believe this may well be advantageous where sizeable ensembles are generated as par
for the course, a common-enough occurrence. After all, why waste a good—or even
not-so-good—model?
We need not content ourselves to a per-run conservation approach, collecting only

models from a single run. We can conserve models over multiple runs, and perhaps
over multiple users. Consider current practice whereby cloud repositories store datasets,
leaderboards, and—infrequently—a few choice models; why not store a jungle of models
created by multiple users? Not only will this provide copious grist for the ML mill but,
moreover, the cost of creating these models is often high—ML algorithms consume sig-
nificant amounts of energy [10]—and limbo seems a somewhat unbecoming choice for
their final resting place.
To drive this point home, think of the following scenario: Several research groups have

been tackling an extremely hard problem (e.g., [11]), each group running variegated ML
algorithms over several months (maybe years). It would not be hard to imagine that the
number of models produced over time would run into the millions (quite easily more).
Most of these models would be discarded unflinchingly, with only a minute handful
retained, and possibly reported upon in the literature. The question we raise is: Could we
produce better answers to the problem at hand if we had recourse to all the waste? For
example, PennAI—an accessible AI system and open-source software—saves models over
multiple runs (and possibly over multiple users), affording it the ability to glean insight
into parameters from them all [12].
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Table 1 Conservation random forests

Feat Info Cl Perf forests Perf jungles Imp

10 3 2 0.85 (0.02) 0.85 (0.02) 0.0%

20 10 3 0.83 (0.02) 0.84 (0.02) 1.2%

50 40 4 0.64 (0.03) 0.69 (0.03) 7.8%

100 90 5 0.49 (0.03) 0.62 (0.03) 26.5%

200 150 6 0.3 (0.03) 0.45 (0.03) 50.0%

300 270 7 0.22 (0.03) 0.35 (0.03) 59.1%

400 350 8 0.18 (0.03) 0.29 (0.03) 61.1%

500 400 9 0.14 (0.02) 0.22 (0.03) 57.1%

1000 500 10 0.11 (0.02) 0.15 (0.03) 36.4%

1000 800 10 0.12 (0.02) 0.17 (0.03) 41.7%

Each line shows the results of 30 replicate experiments, with 5-fold cross validation, 100 independent runs per fold, forests of size
100, and resultant jungles of size 10,000. Feat: number of features in the dataset. Info: number of informative features. Cl: number
of target classes. Perf forests: mean performance of forests on test set across all replicates (SD). Perf jungles: mean performance of
jungles on test set across all replicates (SD); a jungle’s output was computed through straightforward majority voting. Imp:
Percent improvement of Perf jungles vs. Perf forests

Using Scikit-learn it was quite straightforward to set up an exploratory experiment,
with our choice of ML approach being the popular random forest.1 Through the
make_classification function we generated 10 datasets, each comprising 1000
samples and a varying number of features, informative features, and classes. For each
dataset we performed 30 replicate experiments, eachwith 5-fold cross validation. For each
fold the dataset was split into a training set of 4 folds, and the left-out test fold. The train-
ing set was used in 100 independent runs to train a random forest of size 100. All trees
across the 100 runs were saved into a jungle, whose size was 10,000 in the end. We then
compared the performance of the forests vs. the jungle over the test set, and our results
are shown in Table 1. While random forests do not necessarily attain high performance,2

conservation machine learning often shows significant improvement, demonstrating that
the idea has at least prima faciemerit. We fervently invite further exploration.
If one embraces a conservation approach to ML, other issues beyond those raised

above will probably make the scene in short order. For example, of considerable inter-
est nowadays are interpretability [13] and explainability [14] of AI-produced problem
solvers. These issues are doubly important in the biomedical and healthcare fields, and
will necessitate consideration under a conservation agenda [15].
It seems rather befitting to conclude with rapper and songwriter will.i.am who suc-

cinctly enunciated, “Waste is only waste if we waste it.”
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