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Abstract

Background: Determining binding affinity in protein-protein interactions is
important in the discovery and design of novel therapeutics and mutagenesis
studies. Determination of binding affinity of proteins in the formation of protein
complexes requires sophisticated, expensive and time-consuming experimentation
which can be replaced with computational methods. Most computational prediction
techniques require protein structures that limit their applicability to protein
complexes with known structures. In this work, we explore sequence-based protein
binding affinity prediction using machine learning.

Method: We have used protein sequence information instead of protein structures
along with machine learning techniques to accurately predict the protein binding
affinity.

Results: We present our findings that the true generalization performance of even
the state-of-the-art sequence-only predictor is far from satisfactory and that the
development of machine learning methods for binding affinity prediction with
improved generalization performance is still an open problem. We have also
proposed a sequence-based novel protein binding affinity predictor called ISLAND
which gives better accuracy than existing methods over the same validation set as
well as on external independent test dataset. A cloud-based webserver
implementation of ISLAND and its python code are available at https://sites.google.
com/view/wajidarshad/software.

Conclusion: This paper highlights the fact that the true generalization performance
of even the state-of-the-art sequence-only predictor of binding affinity is far from
satisfactory and that the development of effective and practical methods in this
domain is still an open problem.

Keywords: Protein sequence analysis, Protein-protein interaction, Support vector
machines, Web services, Binding affinity

Background
Protein binding affinity is a key factor in enabling protein interactions and defining

structure-function relationships that drive biological processes [1]. Accurate measure-

ment of binding affinity is crucial in understanding complex biochemical pathways and

to uncover protein interaction networks. It is also measured as part of drug discovery
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and design to improve drug specificity [2]. It can be measured in terms of the disassoci-

ation constant (Kd) through different experimental methods such as Nuclear magnetic

resonance spectroscopy, gel-shift and pull-down assays, analytical ultracentrifugation,

Surface Plasmon Resonance (SPR), spectroscopic assays, etc [3, 4]. However, the accur-

acy of these methods depends on dissociation rates and these methods cannot be ap-

plied at a large scale due to cost and time constraints [3, 5]. Therefore, accurate

computational techniques can play an important role in the affinity determination of

protein complexes.

Various computational methods for binding affinity prediction have been proposed

based on free energy perturbation, empirical scoring, and force-field potentials [6–12].

These scoring function based methods are typically trained and evaluated on limited

datasets. These methods fail to accurately predict binding affinities for diverse datasets

[13].

Among computational binding affinity prediction methods, machine learning is pre-

ferred because of its implicit treatment of any relevant factors involved in protein-protein

interactions (PPIs) and the flexibility of using empirical data instead of a fixed or predeter-

mined function form [14]. A representation of the design and use of machine learning

models for binding affinity prediction is given in Fig. 1. Machine learning based affinity

prediction models require a dataset of diverse protein complexes with experimentally de-

termined affinity values for training. By extracting the feature representation of protein

complexes, a regression model is trained which can be used for affinity prediction of a

novel complex (Fig. 1). A number of machine learning based studies for protein binding

affinity prediction have been proposed in the literature [5, 15–19]. Most of these studies

are based on a protein binding affinity benchmark dataset with 3-D structures of 144 pro-

tein complexes [20]. The affinity prediction models proposed by Moal et al., Tian et al.,

and Vangone and Bonvin in their studies are based on 3-D protein structures [5, 15, 16].

However, protein structures are not available for most protein complexes. Consequently,

the sequence-based prediction of binding affinity is an important research problem.

Fig. 1 A general framework for protein affinity prediction using machine learning techniques
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Sequence-based binding affinity prediction is challenging because proteins interaction and

binding affinity are dependent upon protein structures and functions.

Among sequence-based protein binding affinity prediction models using protein

binding affinity benchmark dataset, the model proposed by Yugandhar and Gromiha

(PPA-Pred2) is the state of the art absolute binding affinity predictor [17]. PPA-Pred2

claims high accuracy with a high correlation score between true and predicted binding

affinity values [21]. However, their proposed model performed poorly on an external

validation dataset [22]. Furthermore, their prediction errors are, surprisingly, lower than

the reported deviation in experimental measurements of binding affinity values and the

error rates of structure-based prediction techniques [20, 22]. Yugandhar and Gromiha

have attributed this issue to the difference in experimental conditions and computa-

tional platforms [21]. In this work, we have replicated the validation of PPA-Prep2 on

an external independent test dataset as performed by Moal et. al. [22]. Moreover,

protein binding affinity prediction models proposed by Chen M, et al. and Srini-

vasulu YS, et al., had not been evaluated using any external validation datasets,

and also these studies did not provide an interface to perform such a validation

[18, 19]. These simple researches have highlighted the need to revisit sequence-

based binding affinity prediction and develop novel predictors that can be used in

a practical setting. To address this, we have proposed a new binding affinity pre-

diction model called ISLAND (In SiLico protein AffiNity preDictor). Our pro-

posed model uses sequence features alone and gives higher prediction accuracy

than the PPA-Pred2 web server.

Methods
In this section, we have discussed in detail the methodology adopted to develop and

evaluate the performance of sequence-based protein binding affinity predictors.

Datasets and preprocessing

We have used protein binding affinity benchmark dataset 2.0 for evaluation of

PPA-Pred2 webserver and development of the proposed method ISLAND [20]. This

dataset contains 144 non-redundant complexes of proteins for which both bound

and unbound structures of the ligand and receptor proteins are available. Protein

binding affinities are given in terms of binding free energy (ΔG) and disassociation

constant (Kd). The binding free energy (ΔG) ranges from − 18.58 to − 4.29. Follow-

ing the same data curation and preprocessing technique used by Yugandhar and

Gromiha, we have selected 135 complexes from this dataset [17]. This allows us to

have a direct comparison of our method with the one proposed by Yugandhar and

Gromiha [17].

We have also used an external independent test dataset of 39 protein-protein com-

plexes with known binding free energy (ΔG) to perform a stringent test of performance

comparison between PPA-Pred2 and ISLAND. This dataset is derived from Chen et al.

by removing complexes having more than two chains, involving chains of size less than

50 residues, and having an overlap with training data [23]. This dataset has also been

used by Moal et. al. in their evaluation of binding affinity prediction techniques [22].

Abbasi et al. BioData Mining           (2020) 13:20 Page 3 of 13



Evaluation of the PPA-Pred2 webserver

In order to investigate the accuracy of PPA-Pred2, we evaluated its performance on the

selected dataset. For this purpose, we accessed PPA-Pred2 [17] through its webserver

(URL: http://www.iitm.ac.in/bioinfo/PPA_Pred/) on 03-02-2017. This webserver takes

amino acid sequences of ligand and receptor of a protein complex and returns pre-

dicted values of change in binding free energy (ΔG) and disassociation constant (Kd)

[17]. The results obtained through this evaluation will also serve as a baseline in this

study.

Sequence homology as affinity predictor

In order to confirm whether simple homology is enough to predict protein binding af-

finity accurately or not, we have developed a sequence homology-based protein binding

affinity predictor as a baseline. For this purpose, we predicted the affinity value of a

query protein complex based on the affinity value of its closest homolog in our dataset

of protein complexes with known binding affinity values. We performed the Smith-

Waterman alignment to determine the degree of homology between two protein com-

plexes using BLOSUM-62 substitution matrix with gap opening and extension penalties

of − 11 and − 1, respectively [24, 25].

Proposed methodology

We have developed a sequence-only regression model called ISLAND (In SiLico pro-

tein AffiNity preDictor), to predict absolute protein binding affinity values rather calssi-

fying protein complexes into low and high affinity as in case of LUPI [26]. To develop

ISLAND, we have used different regression methods, evaluation protocols, and

sequence-based feature extraction techniques. The methodology adopted for the devel-

opment of the ISLAND is detailed below.

Sequence-based features

In machine learning based prediction models, we require a feature representation of

each example for training and testing (Fig. 1). Therefore, we have represented each

complex in our dataset through a feature representation obtained from individual

chains in the ligand (l) and receptor (r) of each complex. We used several explicit fea-

tures and various kernel representations to model sequence-based attributes of protein

complexes. We discuss the sequence-based features used in this study below.

Explicit features

Amino acid composition features (AAC) These features capture the occurrences of

different amino acids in a protein sequence. It gives a 20-dimensional feature vector

ϕAAC(s) of a given sequence s such that the ϕAAC(s)k contains the number of times

amino acid k occurs in s [27]. This feature representation has successfully been used to

predict protein interactions, binding sites, and prion activity [27–29].

Average BLOSUM-62 features (Blosum) In contrast to AAC, this feature representa-

tion models the substitutions of physiochemically similar amino acids in a protein. In
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this feature representation, protein sequence s is converted into a 20-dimensional fea-

ture vector by simply averaging the columns from the BLOSUM-62 substitution matrix

corresponding to the amino acids in the given sequence. Mathematically, ϕBlosumðsÞ¼ 1
jsjPjsj

i¼1Bi , where Bi is the column of the BLOSUM-62 substitution matrix [24] corre-

sponding to the ith residue in s.

Propy features (propy) In order to capture the biophysical properties of amino acids

and sequence-derived structural features of a given protein sequence, we used a feature

extraction package called propy [30]. It gives a 1537-dimensional feature representation

ϕpropy(s) of a given sequence s. This representation includes pseudo-amino acid com-

positions (PseAAC), autocorrelation descriptors, sequence-order-coupling number,

quasi-sequence-order descriptors, amino acid composition, transition and the distribu-

tion of various structural and physicochemical properties [31, 32].

Position specific scoring matrix features (PSSM) This feature representation models

the evolutionary relationships between proteins. To get this representation, we used the

Position Specific Scoring Matrix (PSSM) of a given protein sequence [33]. We obtained

the PSSM for each protein chain in a complex by using PSI-BLAST for three iterations

against the non-redundant (nr) protein database with an e-value threshold of 10−3 [33,

34]. In this feature representation, we represent the protein sequence s by the average

of columns in its PSSM. This results in a 20-dimensional feature vector ϕPSSMðsÞ¼ 1
jsjPjsj

i¼1F
s
i , where Fs

i is the column in the PSSM corresponding to the ith residue in s.

ProtParam features (ProtParam) In order to capture different physiochemical proper-

ties of a protein such as the molecular weight of the protein, aromaticity, instability

index, isoelectric point, and secondary structure fractions, we have used ProParam

ExPASy tools to get ProtParam representation [35–37]. This leads to a 7-dimensional

feature representation ϕProtParam(s) of a given sequence s.

Kernel representations

In addition to using explicit protein sequence features in our machine learning models

for binding affinity prediction, we have also experimented with different sequence-

based kernel [38, 39]. Kernel methods present an alternate way of sequence representa-

tion by modeling the degree of similarity between protein sequences instead of an ex-

plicit feature representation [38]. Kernel-based methods such as support vector

machines and support vector regression can make use of these kernel function scores

in their training and testing [40]. Different sequence kernels used in this work are de-

scribed below. Each of these kernels k(a, b) can be interpreted as a function that mea-

sures the degree of similarity between sequences a and b.

Smith-Waterman alignment kernel (SW kernel) We have used the Smith-Waterman

alignment algorithm for determining the degree of similarity between two protein se-

quences [25]. The Smith-Waterman kernel kSW(a, b) is simply the alignment score ob-

tained from the Smith-Waterman local alignment algorithm using BLOSUM-62

Abbasi et al. BioData Mining           (2020) 13:20 Page 5 of 13



substitution matrix with gap opening and extension penalties of − 11 and − 1, respect-

ively. It is important to note that this kernel may not satisfy the Mercer’s conditions as

the eigen values of the kernel matrix may be negative [41]. We addressed this issue by

subtracting the most negative eigenvalue of the original kernel matrix from its diagonal

elements [42]. From a theoretical point of view, this kernel can be interpreted as the

optimal local alignment score of the two sequences [42]. Mathematically, the Smith-

Waterman alignment score kSW(a, b) between sequences, a and b can be written as fol-

lows [42].

kSW a; bð Þ ¼ maxπ∈Π l;rð Þp a; b;πð Þ ð1Þ

Here, Π(a, b) denote the set of all possible local alignments between a and b, and

p(a, b, π) represents the score of the local alignment πϵΠ(a, b) between a and b.

Local alignment kernel (LA kernel) Local alignment kernel is useful for comparing

sequences of different lengths that share common parts [40, 42]. In contrast to the

Smith-Waterman alignment kernel which considers only the optimal alignment, this

kernel sums up contributions of all the possible local alignments of input sequences.

Mathematically, the local alignment score kLA(a, b) between sequences, a and b can be

written as follows [42].

kβLA a; bð Þ ¼
X

π∈Π a;bð Þ exp βp a; b;πð Þð Þ ð2Þ

Here in Eq. (2), β ≥ 0 is a parameter that controls the sensitivity of the LA kernel. For

larger values of β score of LA kernel approaches SW kernel score [42]. We have used

β = 0.1 based on empirical performance.

Mismatch kernel (MM kernel) The mismatch kernel captures the degree of overlap

between subsequences of the two sequences while allowing mismatches [43]. MM ker-

nel kk;mMMða; bÞ gives the number of subsequences of length k that are present in both

the input sequences a and b with a maximum of m mismatches. Ranges for the values

of k and m are 3 − 9 and 0 − 5, respectively. We have used k = 5 and m = 3 based on em-

pirical performance.

Complex level features representation

We need to predict protein binding affinity at the complex level. Since we have ex-

tracted features at the chain level, therefore, we require a mechanism to obtain a com-

plex level feature representation from individual chains. The basic mechanism of

combining individual chain level feature representation from each ligand and receptor

to form a complex level representation is shown in Fig. 2. Complex level representation

is obtained for explicit features by concatenation of chain level features and for kernels

by adding kernels over the constituent chains of a complex.

Feature concatenation

In our machine learning model, a complex c is represented by the tuple c ≡ ((l, r), y),

where (l, r) is the pair of ligand and receptor proteins in the complex and y is the corre-

sponding affinity value. To generate the complex level feature representation ψ(c), we
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simple concatenate the feature representations of respective ligand and receptor as ψðc

Þ ¼ ψAvgðlÞ
ψAvgðrÞ

� �
. Here, ψAvgðlÞ ¼ 1

jlj
P

q∈lϕðqÞ and ψAvgðrÞ ¼ 1
jrj
P

q∈rϕðqÞ are the explicit

feature representations averaged across all the chains present in the ligand and receptor

proteins, respectively. This method of feature representation generation has already

been used for protein interacting residues predictor [44].

Combining kernels

To make predictions at the complex level from sequence-based kernels, we have devel-

oped a complex-level kernel by simply averaging the kernel function values of individ-

ual chains from the two complexes [38]. Mathematically, the kernel over complexes c

and c′ is given by Kðc; c0 Þ ¼ 1
jcj�jc0 j

X
q∈c;q0∈c0 0

kðq; q0 Þ, where k(q, q′) is the chain level kernel

over two chains from the two complexes.

Regression models

Here, we begin by presenting the binding affinity prediction problem as a regression

problem. In machine learning based affinity prediction, a dataset consisting of N exam-

ples (ci, yi), where i = 1…N. In this representation, ci is a complex with known binding

affinity yi. The feature representation of ci is ψ(ci). Our objective in machine learning

based regression is to train a model f(c) that can predict the binding affinity of the com-

plex c. The learned regression function f(∙) should generalize well over previously un-

seen complexes. We used the following regression techniques through Scikit-learn to

Fig. 2 Techniques adopted for generating sequence-based feature representation of a protein complex for
developing machine learning based protein binding affinity prediction models
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get different regression models [45]. It is also important to note that the feature repre-

sentations are normalized to have unit norm and standardized to zero mean and unit

standard deviation before using them in the regression model.

Ordinary least-squares regression (OLSR)

Ordinary least squares (OLS) estimates the regression function f(c) =wTψ(c) + b by

minimizing the sum of squared error between the actual and predicted affinity values

minw;b
PN
i
ðyi − f ðciÞÞ2 [46]. Here, w and b are parameters to be learned. This technique

has been used previously for protein binding affinity prediction [17]. We have used this

technique as a baseline in our study.

Support vector regression (SVR)

Support Vector Machines have been effectively used to solve different computational

problems in bioinformatics [47]. Support Vector Regression (SVR) performs regression

using ε-insensitive loss and, by controlling model complexity [48]. Training a SVR for

protein binding affinity prediction involves optimizing the objective function given in

Eq. (3) to learn a regression function f(c) =wTψ(c) + b.

minw;b
1
2

wk k2 þ C
XN
i¼1

ξþi þ ξ −
i

� �

Such that for all i :
yi − f cið Þ≤εþ ξþi
f cið Þ − yi≤εþ ξ −

i
ξþi ; ξ

−
i ≥0

8<
: ð3Þ

Here, 1
2 kwk2 controls the margin, ξþi and ξ −

i capture the extent of margin violation

for a given training example and C is the penalty of such violations [47]. We used both

linear and radial basis function (rbf) SVR in this study. The values of C, gamma, and

epsilon were optimized during model selection. SVR has already been used for the same

purpose in previous studies [17].

Random Forest regression (RFR)

Random Forest regression (RFR) is an ensemble of regression trees used for nonlinear

regression [49]. Each regression tree in the RF is based on randomly sampled subsets of

input features. We optimized RF with respect to the number of decision trees and a

minimum number of samples required to split in this study using grid search. This re-

gression technique has been used in many related studies [15, 50, 51].

Model evaluation and performance assessment

To evaluate the performance of all the trained regression models, we have used Leave

One Complex Out (LOCO) cross-validation (CV) [52]. In LOCO, a regression model is

developed with (N – 1) complexes and tested on the left out complex. This process is

repeated for all the N complexes present in the dataset. We used Root Mean Squared

Error RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

PN
i¼1ðyi − f ðciÞÞ2

q
and Pearson correlation coefficient (Pr) between

the predicted f(ci) and actual yi, as performance measures for model evaluation and
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performance assessment. To check the statistical significance of the results, we have

also estimated the P-value of the correlation coefficient scores. We used grid search

over training data to find the optimal values of hyper-parameters of different regression

models.

Webserver

We have deployed ISLAND as a webserver that takes a pair of protein sequences in

plain text and predicts their binding affinity. After the successful submission of protein

sequences, the result page shows predicted binding affinity along with disassociation

constant (Kd). A Python implementation of the proposed method together with a web-

server is available at http://faculty.pieas.edu.pk/fayyaz/software.html# island.

Results and discussion
In this section, we discuss the results and give details of the major outcomes of our

study.

Binding affinity prediction through sequence homology

As a baseline, we have obtained the predicted affinity values of all 135 complexes in

our dataset using a sequence homology-based affinity prediction method. The Pearson

correlation coefficient (Pr) between predicted and experimental values of ΔG is 0.29

with a Root Mean Squared Error (RMSE) of 3.20. These results with poor correlation

and high RMSE value show that the sequence homology only cannot be effectively used

to predict the binding affinity of the protein complexes. As discussed in the next sec-

tion, our machine learning based method performs significantly better than homology-

based predictions.

Binding affinity prediction through ISLAND

We have evaluated the performance of three different regression models (OLSR, RFR,

and SVR) along with eight different types of sequence descriptors with LOCO cross-

validation over the docking benchmark dataset. The results of this analysis are shown

in Table 1 in the form of Root Mean Squared Error (RMSE) and Pearson correlation

coefficient (Pr) along with statistical significance (P-value). With explicit features, we

obtained a maximum correlation of 0.41 with RMSE = 2.60 between predicted and ex-

perimental values of ΔG using propy through SVR (Table 1). While using kernel de-

scriptors, we obtained a maximum correlation of 0.44 with an RMSE = 2.56 between

predicted and experimental ΔG values using the local alignment kernel (see in Table 1).

We have achieved the best performance through local kernel across all sequence de-

scriptors used in this study as shown in Table 1. Moreover, LA kernel performs better

than SW kernel because of considering the effect of all the local alignments rather tak-

ing the best alignment as in the case of SW kernel. The RMSE value of ISLAND pre-

dictions is quite close to the range of experimental uncertainties (1–2 kcal/mol) as

reported by Kastritis et al. [20]. Our proposed method outperforms the previous

sequence-based method proposed by Srinivasulu YS, et al., with a reported correlation

coefficient of 0.34 through Jackknife cross validation [19]. Another protein sequence-

based method involving deep learning proposed by Chen M, et al., reported a higher
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accuracy with a correlation coefficient of 0.873 using 10-fold cross-validation and

SKEMPI dataset [18, 53]. However, the cross-validation scheme adopted by Chen M,

et al., may not conform to the underlying problem as SKEMPI dataset involves more

than one mutant proteins of a single protein complex [18, 52, 53].

The performance of the ISLAND is also comparable with the methods based on

3-D protein structures such as DFIRE (Pr = 0.35), PMF (Pr = 0.37), RBF (Pr = 0.44),

M5’ (Pr = 0.45) and RF (Pr = 0.48) as reported by Moal et al. [15]. Despite getting

the comparable performance of ISLAND with structure-based methods, there is

still a lot of room for improvement in affinity prediction from sequence informa-

tion alone.

Comparison using external independent test dataset

We obtained the predicted binding affinity values for all the complexes in our ex-

ternal validation dataset using both PPA-Pred2 and ISLAND. We have seen a sig-

nificant performance improvement of the ISLAND in terms of RMSE between

predicted and experimental ΔG values. We obtained an RMSE of 1.98 with ISLA

ND whereas PPA_Pred2 gives us an RMSE of 4.78. We have also seen a significant

performance improvement of both the methods in terms of Pearson correlation co-

efficient and absolute error with values 0.35, 1.52 and 0.05, 2.63 through ISLAND

and PPA_Pred2, respectively. We have also shown a comparison between ISLAND

and PPA-Pred2 in terms of absolute error between predicted and actual binding af-

finity values of all the complexes in our validation set in Fig. 3. The binding affin-

ity of > 60% complexes were predicted within an absolute error of 1.5 kcal/mol

using ISLAND, whereas, through PPA-Pred2 absolute error for these complexes is

above 2.5 kcal/mol (see in Fig. 3). These results show better performance of our

proposed method for binding affinity prediction of proteins in a complex in com-

parison to PPA-Pred2. These performance improvements of ISLAND over PPA-

Pred2 are based on a proper model selection with parameters tuned using grid

search and better feature engineering by using different kernels. Moreover, these

results also support the criticism of Moal et. at., on PPA-Pred2 and suggest a need

Table 1 Performance of regression models trained on the range of protein sequence descriptors
using loco cross validation

Feature
Descriptors

Regression Models

OLSR RFR SVR

Pr P-value RMSE Pr P-value RMSE Pr P-value RMSE

AAC 0.20 1.5 × 10− 2 3.19 0.40 6.4 × 10− 7 2.66 0.40 1.0 × 10−6 2.69

Blosum 0.20 1.4 × 10−2 3.10 0.37 2.8 × 10−7 2.71 0.39 1.5 × 10−5 2.67

propy 0.14 1.3 × 10−1 3.67 0.39 3.0 × 10−3 2.64 0.41 1.1 × 10−6 2.60

PSSM 0.19 7.2 × 10−1 3.68 0.38 1.1 × 10−5 2.67 0.37 1.5 × 10−5 2.66

ProtParam 0.25 3.0 × 10−3 2.82 0.34 4.7 × 10−5 2.72 0.37 9.4 × 10−6 2.64

SW kernel results not applicable 0.37 2.1 × 10−6 2.63

LA kernel 0.44 1.2 × 10−8 2.56

MM kernel 0.38 7.1 × 10−6 2.66
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for further work on methods of protein binding affinity prediction using sequence

information [22].

Conclusions
This paper highlights the fact that the true generalization performance of even the

state-of-the-art sequence-only predictor of binding affinity is far from satisfactory and

that the development of effective and practical methods in this domain is still an open

problem. As already suggested in recent studies by Dias & Kolaczkowski and Abbasi

et al., to achieve better performance in this domain, we need either a significant in-

crease in the amount of quality affinity data or methods of leveraging data from similar

problems [26] [54]. We also propose a novel sequence-only predictor of binding affinity

called ISLAND which gives better accuracy than PPA-Pred2 webserver and other exist-

ing methods over the same external independent test set.
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