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Abstract

Here we present a web interface that implements a comprehensive mechanistic
model of the SARS-CoV-2 disease map. In this framework, the detailed activity of the
human signaling circuits related to the viral infection, covering from the entry and
replication mechanisms to the downstream consequences as inflammation and
antigenic response, can be inferred from gene expression experiments. Moreover,
the effect of potential interventions, such as knock-downs, or drug effects (currently
the system models the effect of more than 8000 DrugBank drugs) can be studied.
This freely available tool not only provides an unprecedentedly detailed view of the
mechanisms of viral invasion and the consequences in the cell but has also the
potential of becoming an invaluable asset in the search for efficient antiviral
treatments.
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Introduction
The recent pandemic of COVID-19 (Coronavirus Disease-2019), an emerging respira-

tory disease caused by the SARS-CoV-2 virus, which spread more efficiently than pre-

vious highly pathogenic coronaviruses SARS-CoV and MERS-CoV, has led to a

tremendous toll of affected cases and over 500,000 fatalities in more than 200 countries

since its first outbreak in late 2019 [1]. Precisely due to the rapid transmission of this

novel pathogen, no antiviral drugs or vaccines are available for SARS-CoV-2.

Understanding the molecular mechanisms that mediate SARS-CoV-2 infection is key

for the rapid development of efficient preventive or therapeutic interventions against

the COVID-19. A comprehensive description of such molecular mechanisms is repre-

sented in the corresponding disease map, that is, the sub-module of the whole pathway

of known human protein functional interactions that summarize details of the disease

mechanism and consequently are relevant for understanding the disease [2]. The re-

cent availability of a detailed catalog of viral-human protein interactions [3] has

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Rian et al. BioData Mining            (2021) 14:5 
https://doi.org/10.1186/s13040-021-00234-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-021-00234-1&domain=pdf
http://orcid.org/0000-0003-3318-120X
mailto:maria.pena.chilet.ext@juntadeandalucia.es
mailto:maria.pena.chilet.ext@juntadeandalucia.es
mailto:joaquin.dopazo@juntadeandalucia.es
mailto:joaquin.dopazo@juntadeandalucia.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


facilitated the construction of a first version of a map of the human molecular pathways

involved in the viral infection and downstream consequences [4].

Disease maps are repositories of knowledge of disease-relevant mechanisms that pro-

vide qualitative guidance for the interpretation of experimental findings [2]. Actually,

disease maps are the supporting foundation of different tools able to model the infor-

mation contained in them in order to provide a detailed quantitative explanation for

experimental results [5]. In particular, mechanistic models of disease maps are becom-

ing increasingly relevant for genomic data interpretation because they provide a natural

link between omics data measurements and cell behavior and outcome [6], which ul-

timately accounts for the phenotype of the infection. The knowledge of these links al-

lows a better understanding of the molecular mechanisms of the viral infection and the

responses to drugs. Actually, mechanistic models of human signaling [7] or metabolic

pathways [8] have been successfully used to uncover specific molecular mechanisms be-

hind different cancers [7, 9–11], rare [12] and common [13] diseases, to reveal mecha-

nisms of action of drugs [14], and dissecting them at single cell level [15], to suggest

personalized treatments [16, 17] and in other biologically interesting scenarios [18, 19].

Basically, mechanistic models analyze experimental values in the context of the disease

map information, which is used to point out the relevant aspects of the molecular

mechanisms behind the experiment. It is important to note that this assessment is

made from a systems biology perspective, in the holistic context of the disease map,

and considers the functional interactions among the gene products as described in the

map. Typically, these experimental values are gene expression transcriptomic data, al-

though other data such as proteomic, phosphoproteomic, genomic [20], or even methy-

lomics, can also be used. Interestingly, beyond its usefulness for the functional

interpretation of experimental results, the most remarkable property of mechanistic

models is that they can be used to predict the effects of interventions (inhibitions, over-

activations, drugs, etc., alone or in combinations) over proteins of the map in the

condition studied [21]. Therefore, this opens the possibility of using these models for

exploring new therapeutic options as well [22].

Methods
To construct a first approach to the COVID-19 disease map, the SARS-CoV-2 virus-

human interactome was firstly expanded from existing KEGG pathways [23] to define

regions within the whole set KEGG pathways that potentially account for the molecular

mechanism of the viral infection and the downstream consequences. Pathways are

composed of individual signaling circuits (sub-pathway that describes the chain of sig-

nal transduction that connects a receptor protein to an effector protein) whose func-

tionalities can be described by the UniProt [24] functional annotations of their effector

nodes [7, 25]. It order to restrict the map to those circuits relevant for the COVID-19

disease mechanism, only signaling circuits with at least one UniProt [24] function that

fit in one of these virus-related categories: 1) Host-virus interaction, 2) inflammatory

response, 3) immune activity, 4) antiviral defense, 5) endocytosis were selected to define

the COVID-19 disease map. The model presented here is a part of an ongoing more

detailed repository of SARS-CoV-2 mechanisms, the COVID-19 Disease Map, in con-

struction by an international community, whose most recent version is available at:

https://doi.org/10.17881/covid19-disease-map. In addition to the human version of the
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COVID-19 map, versions for animal models, like mouse or rat, using the homologous

pathways are also provided by the tool [4].

The mechanistic model implemented here takes a directed graph (in this case a first

version of the COVID-19 map, and in the future new versions as these are released),

and extracts from it the collection of signaling circuits that connect receptor nodes to

effector nodes. The signal transduction across such circuits, Sn, is estimated using gene

expression values as proxies of protein activity [26] using the following recursive equa-

tion [7]:

Sn ¼ υn∙ 1 −
Y

sa∈A

1 − sað Þ
 !

�
Y

si∈I

1 − sið Þ ð1Þ

Sn is the signal intensity for the current node n, vn is its normalized gene expression

value, A is the set of activation signals (sa), arriving to the current node from activation

edges, Iis the set of inhibitory signals (si) arriving to the node from inhibition edges.

The Sn values of circuits are further used in comparisons to detect increases or de-

creases in signaling activity (and consequently in the corresponding cell functionality),

or to infer the effect of interventions in signaling or the potential resulting phenotype

of mutations.

Implementation

Here, we present the first implementation of a mechanistic model of the SARS-CoV-2

infection in a user-friendly web interface. The model used here implements the

HiPathia [7] algorithm, which has demonstrated to outperform other competing algo-

rithms in a recent benchmarking [25]. The mechanistic model implemented in

HiPathia has been successfully used to understand the disease mechanisms behind dif-

ferent cancers [7] and was able to predict cancer vulnerabilities with a high precision

[9]. The model has been implemented in a user-friendly web application that inputs

normalized gene expression values (or similar proteomics or phosphoproteomic values)

and can be found at http://hipathia.babelomics.org/covid19/. As an example, we carried

out some analyses that involve a case-control differential signaling analysis using a re-

cently published gene expression experiment [27] with human lung cell lines infected

with SARS-CoV-2 (GEO id: GSE147507, the dataset GSE147507_RawReadCounts_

Human.ts). The infected cells showed a differential activation pattern in circuits related

to virus entrance to cell, activation of immune, inflammatory and other virus-triggered

responses (see Fig. 1a and Table 1 for a detailed list of differentially activated signaling

circuits and Table 2 for detail on the differentially activated cell functionalities). Inter-

estingly, several of the deregulated pathways include TNF, a target gene of chloroquine,

one of the drugs with promising results against COVID-19 [28]. Moreover, NF-kB sig-

naling pathway has been highlighted in several studies as one of the main pathways re-

sponsible for COVID-19 progression [29] (Fig. 1 B). Figure 1c depicts the heathmap of

signaling activity profiles that discriminate the two classes of samples (cases and con-

trols) compared. The results found are consistent with those of previous analyses with

the same data, where a modest but generalized response of mechanisms related to im-

mune response and inflammatory processes, such as response to chemokine and
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cytokines, virus defense-related processes, and other general functions of cell like apop-

tosis or cell differentiation was demonstrated [27]. Interestingly, the processes

highlighted by the authors are response to chemokines and interferon-related signaling

pathways. Both processes are highly associated with pathways in whose circuits our

model detect significant deregulations (see Table 1), such as Toll-like and TNF signal-

ing pathways. The relation between chemokines, interferon and Toll-like signaling is

Fig. 1 a Activation pattern of NF-KB pathway in lung cell lines infected with SARS-CoV-2. b Detail of NF-KB
pathway’s circuit with TNF as effector protein. c Heatmap representing activation values of all the circuits in
COVID-19 disease map (left) and a representation of a Principal Component Analysis based on signaling
profiles of the samples that clearly segregates the two conditions studied: controls are represented in dark
blue and cases in purple (right). d An example of the Perturbation effect option simulating the effect of
Siltuximab (targeting IL6 protein) in Toll-like signaling pathway. Individual gene expression levels in each
node are represented green scale. e An example of the Variant interpreter option simulating the effect of a
loss of function mutation in NFKBIA protein over lung tissue pathway activity in the TNF signaling pathway.
Mean values of gene expression levels in each node are represented in green scale
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Table 1 Circuits from CoV-Hipathia differentially activated in lung cell lines infected with SARS-CoV-2

KEGG pathway: effector gene/s UP/ DOWN statistic p-valuea FDRb FCc log FC

MAPK signaling pathway: NLK UP 2.882 2.16E-03 0.023 1.098 0.135

MAPK signaling pathway: STK3 UP 2.882 2.16E-03 0.023 1.209 0.274

MAPK signaling pathway: ECSIT, TRAF6 UP 2.882 2.16E-03 0.023 1.182 0.241

Ras signaling pathway: REL UP 2.882 2.16E-03 0.023 1.074 0.103

Ras signaling pathway: MLLT4 UP 2.882 2.16E-03 0.023 1.049 0.069

NF-kappa B signaling pathway: CFLAR UP 2.882 2.16E-03 0.023 1.212 0.278

NF-kappa B signaling pathway: BIRC2 UP 2.882 2.16E-03 0.023 1.261 0.335

NF-kappa B signaling pathway: XIAP UP 2.882 2.16E-03 0.023 1.176 0.234

NF-kappa B signaling pathway: BCL2L1 UP 2.882 2.16E-03 0.023 1.193 0.254

NF-kappa B signaling pathway: GADD45B UP 2.882 2.16E-03 0.023 1.179 0.238

NF-kappa B signaling pathway: BCL2A1 UP 2.882 2.16E-03 0.023 1.570 0.651

NF-kappa B signaling pathway: NFKB2 UP 2.882 2.16E-03 0.023 1.225 0.293

NF-kappa B signaling pathway: CXCL8 UP 2.882 2.16E-03 0.023 1.185 0.245

NF-kappa B signaling pathway: IL1B UP 2.882 2.16E-03 0.023 1.341 0.424

NF-kappa B signaling pathway: TNFAIP3 UP 2.882 2.16E-03 0.023 1.311 0.390

NF-kappa B signaling pathway: NFKBIA UP 2.882 2.16E-03 0.023 1.254 0.327

NF-kappa B signaling pathway: PTGS2 UP 2.882 2.16E-03 0.023 1.267 0.341

NF-kappa B signaling pathway: CXCL2 UP 2.882 2.16E-03 0.023 1.335 0.417

NF-kappa B signaling pathway: IKBKG, CHUK, IKBKB UP 2.882 2.16E-03 0.023 1.110 0.151

NF-kappa B signaling pathway: BCL2L1 UP 2.882 2.16E-03 0.023 1.098 0.135

NF-kappa B signaling pathway: BCL2A1 UP 2.882 2.16E-03 0.023 1.448 0.534

HIF-1 signaling pathway: TIMP1 UP 2.882 2.16E-03 0.023 1.051 0.072

HIF-1 signaling pathway: TIMP1 UP 2.882 2.16E-03 0.023 1.051 0.072

HIF-1 signaling pathway: EDN1 UP 2.882 2.16E-03 0.023 1.121 0.164

HIF-1 signaling pathway: NOS2 UP 2.882 2.16E-03 0.023 1.585 0.664

HIF-1 signaling pathway: PDK1 UP 2.882 2.16E-03 0.023 1.037 0.052

HIF-1 signaling pathway: PGK1 UP 2.882 2.16E-03 0.023 1.048 0.068

HIF-1 signaling pathway: LDHA UP 2.882 2.16E-03 0.023 1.047 0.066

mTOR signaling pathway: VEGFA UP 2.882 2.16E-03 0.023 1.059 0.083

mTOR signaling pathway: TSC1 DOWN −2.882 2.16E-03 0.023 0.946 −0.080

PI3K-Akt signaling pathway: BCL2L11 DOWN −2.882 2.16E-03 0.023 0.918 −0.123

Apoptosis: FADD, TRADD UP 2.882 2.16E-03 0.023 1.118 0.161

Apoptosis: IRAK3, MYD88 UP 2.882 2.16E-03 0.023 1.167 0.223

Toll-like receptor signaling pathway: CXCL10 UP 2.882 2.16E-03 0.023 1.518 0.602

Toll-like receptor signaling pathway: IFNA1 UP 2.882 2.16E-03 0.023 1.486 0.572

Toll-like receptor signaling pathway: IL1B UP 2.882 2.16E-03 0.023 1.172 0.229

Toll-like receptor signaling pathway: IL6 UP 2.882 2.16E-03 0.023 1.526 0.610

RIG-I-like receptor signaling pathway: MAPK14 UP 2.882 2.16E-03 0.023 1.214 0.280

RIG-I-like receptor signaling pathway: MAVS, TMEM173 UP 2.882 2.16E-03 0.023 1.204 0.268

RIG-I-like receptor signaling pathway: IRF7 UP 2.882 2.16E-03 0.023 1.540 0.623

Ras signaling pathway: MAPK8 UP 2.722 4.33E-03 0.035 1.043 0.061

NF-kappa B signaling pathway: TRAF1 UP 2.722 4.33E-03 0.035 1.193 0.254

NF-kappa B signaling pathway: TNF UP 2.722 4.33E-03 0.035 1.639 0.713

HIF-1 signaling pathway: TFRC UP 2.722 4.33E-03 0.035 1.049 0.068
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well-known [30, 31], moreover, interferon is a key player in TNF signaling pathway

[32], and both signaling pathways are interrelated. Beyong the pure interpretation of

the results, another novel and very useful option of the implementation of the model is

the Perturbation effect. It allows estimating the effect of interventions (inhibitions or

overexpression) across the signaling circuits of the model in a given condition. More-

over, the effect of more than 8000 targeted drugs from DrugBank can be predicted by

selecting them, individually or in combinations. Figure 1d shows and example of the

Perturbation effect option in which the impact of Siltuximab, a drug in study in patients

with COVID-19 respiratory failure [33] which targets protein IL6, is simulated. Individ-

ual gene expression levels in each node are represented in shades of grayish green.

Figure 1e, shows an example of the Variant interpreter option simulating the effect of a

Table 1 Circuits from CoV-Hipathia differentially activated in lung cell lines infected with SARS-CoV-2
(Continued)

KEGG pathway: effector gene/s UP/ DOWN statistic p-valuea FDRb FCc log FC

Sphingolipid signaling pathway: SMPD2 UP 2.722 4.33E-03 0.035 1.388 0.473

Apoptosis: FADD, TRADD UP 2.722 4.33E-03 0.035 1.358 0.442

Apoptosis: TRAF2, RIPK1, TRADD UP 2.722 4.33E-03 0.035 1.358 0.442

Toll-like receptor signaling pathway: TNF UP 2.722 4.33E-03 0.035 1.434 0.520

TNF signaling pathway: CASP7 UP 2.722 4.33E-03 0.035 1.388 0.473

TNF signaling pathway: CASP3 UP 2.722 4.33E-03 0.035 1.371 0.455

TNF signaling pathway: BAG4 UP 2.722 4.33E-03 0.035 1.391 0.476
a P-value is calculated using Wilcoxon test
b FDR refers to p-value adjusted for multiple comparisons using Benjamini and Hochberg method
c FC means Fold Change

Table 2 Functions from CoV-Hipathia differentially activated in lung cell lines infected with SARS-CoV-2

UniProt function UP/DOWN statistic p-valuea FDRb FCc logFC

Innate immunity UP 2.882 2.16E-03 0.018 1.048 0.067

Immunity UP 2.882 2.16E-03 0.018 1.019 0.028

Inflammatory response UP 2.882 2.16E-03 0.018 1.028 0.041

Antiviral defense UP 2.882 2.16E-03 0.018 1.192 0.253

Pyrogen UP 2.882 2.16E-03 0.018 1.177 0.235

Prostaglandin biosynthesis UP 2.882 2.16E-03 0.018 1.267 0.341

Prostaglandin metabolism UP 2.882 2.16E-03 0.018 1.267 0.341

Fatty acid biosynthesis UP 2.882 2.16E-03 0.018 1.266 0.341

Lipid biosynthesis UP 2.882 2.16E-03 0.018 1.266 0.341

Acute phase UP 2.882 2.16E-03 0.018 1.526 0.610

Osteogenesis UP 2.882 2.16E-03 0.018 1.181 0.241

Autophagy DOWN −2.722 4.33E-03 0.028 0.976 −0.035

Translation regulation UP 2.722 4.33E-03 0.028 1.015 0.022

Sphingolipid metabolism UP 2.722 4.33E-03 0.028 1.388 0.473

Necrosis UP 2.562 8.66E-03 0.046 1.009 0.013

Fibrinolysis UP 2.562 8.66E-03 0.046 1.103 0.141

Plasminogen activation UP 2.562 8.66E-03 0.046 1.072 0.101
a P-value is calculated using Wilcoxon test
b FDR refers to p-value adjusted for multiple comparisons using Benjamini and Hochberg method
c FC means Fold Change
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loss of function mutation in NFKBIA gene product over lung tissue pathway activity.

One of the affected circuits in TNF signaling pathway is shown. Mean values of gene

expression levels in each node are represented in shades of grayish green. A detailed

description of the usage of the tool can be found in the accompanying help and

tutorial.

Despite the limitations due to the few samples available, the results of the example

clearly show the usefulness of this tool for modelling the repertoire of cell responses

triggered by SARS-CoV-2, and the enormous potential that it has for future COVID-19

research and discovery of therapeutic interventions. Moreover, in spite of its short life

CoV-Hipathia has already been quoted among other useful web tools to fight the

COVID-19 pandemic [34] .
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