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Abstract

Background: Prediction of novel Drug–Target interactions (DTIs) plays an important
role in discovering new drug candidates and finding new proteins to target. In
consideration of the time-consuming and expensive of experimental methods.
Therefore, it is a challenging task that how to develop efficient computational
approaches for the accurate predicting potential associations between drug and
target.

Results: In the paper, we proposed a novel computational method called WELM-
SURF based on drug fingerprints and protein evolutionary information for identifying
DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring
Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up
robot features (SURF) is employed to extract sequence key feature from PSSM. For drug
fingerprints, the chemical structure of molecular substructure fingerprints was used to
represent drug as feature vector. Take account of the advantage that the Weighted
Extreme Learning Machine (WELM) has short training time, good generalization ability,
and most importantly ability to efficiently execute classification by optimizing the loss
function of weight matrix. Therefore, the WELM classifier is used to carry out classification
based on extracted features for predicting DTIs. The performance of the WELM-SURF
model was evaluated by experimental validations on enzyme, ion channel, GPCRs and
nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained
average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and
nuclear receptor dataset respectively. We also compared our performance with the
Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on
enzyme and ion channels dataset and other exiting methods on four datasets. By
comparing with experimental results, the performance of WELM-SURF is significantly
better than that of ELM, SVM and other previous methods in the domain.
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Conclusion: The results demonstrated that the proposed WELM-SURF model is
competent for predicting DTIs with high accuracy and robustness. It is anticipated that
the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics
studies related to DTIs prediction.
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Background
The knowledge of drug-target interactions (DTIs) is much essential for drug develop-

ment, so more and more studies have pay attention to identify drug-target interactions

(DTIs). Identifying of novel DTIs can provide a certain help in drug development and

finding new target proteins and discovering new drug candidates [1, 2]. In recent years,

many experimental methods have been developed for identifying associations between

drug and target protein, however, which are expensive and time-consuming. Develop-

ing a successful new chemistry-based drug usually costs billions of dollars, and it takes

nearly a decade to bring the drug into market. However, only a few drug candidates are

approved for marketing by Food and Drug Administration (FDA) [3–5]. The major rea-

son is that lack of knowledge of DTIs, resulting in unacceptable toxicity for drug candi-

dates. However, more and more studies have shown that the DTIs can provide a

significant effect on the toxic side effects or toxicity of drug compounds. The know-

ledge of protein-target interactions can provide a certain help in finding the toxicity of

drug candidates [6]. In addition, identifying interactions between protein and target can

also help detecting new potential targets for an old drug and finding many potential

drug candidates for a new drug target. Identifying of all potential targets could bring

about a better understanding of potential toxicity and treatment of other diseases. Be-

cause of the inherent disadvantages of experimental methods, it is an urgent task for

developing efficient computational approaches to identify DTIs. As a result, using com-

putational approaches for predicting DTIs is becoming more and more important. New

potential drug–target interaction candidates could be discovered by using computa-

tional methods. This make it can reduce the cost and time of experimental methods

and provide a useful validation for biological experimental.

With the completion of the human genome project and the advent of molecular

medicine, and with the rapid development of computer technology and biotechnology,

the number of biology and chemistry biomedical literature is growing rapidly. This en-

ables researchers to restudy the problem related to DTIs through system integration. In

order to computational predict DTIs, many related databases have been established,

some of which are freely available from the public sector and pay attention to relation-

ships between drug and target, for example, Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) [7] SuperTarget and Matador [8], DrugBank [9, 10] and Therapeutic

Target Database (TTD) [11, 12]. The most important help is that the data stored in

these databases can provide an amount of essential experimental materials for re-

searchers to develop new computational methods for detecting DTIs on large-scale and

widely genome.

Because of the importance of identifying DTIs, a large number of computational ap-

proaches have been presented to detect DTIs. These methods can be classified as two
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categories: the ligand-based virtual screening approach and docking simulation. The

first method compares the similarity of a given protein based on chemical structure

with a classical SAR framework to predict DTIs [13]. However, this method has the dis-

advantage of not using protein domain information. The second method is a very useful

tool of molecular modeling, which can detect the positive interactions between drug

molecules and proteins by dynamically simulating the binding between drug molecules

and proteins [14–16]. However, the method has a significantly disadvantage that it can

be only applied to the proteins of known 3D protein structure. So far, all proteins only

contain a fraction of the proteins of known 3D protein structure, therefore, the Dock-

ing simulation method is difficult to meet the experimental conditions. In addition,

compared with the data of known 3D protein structure, more and more protein se-

quence data have been detected, and the protein sequence data are increasing exponen-

tially. Therefore, it is very urgent research for develop efficient computational

approaches based on protein sequence to identify DTIs.

Recently, a large number of computational methods have been developed to identify

DTIs. Yang et al [17] proposed a computational method for finding optimal multi-

objective intervention schemes in disease networks. For better recovering the disease

network to the desired normal state, the method attempts to identify effective interven-

tion points and combinations of interventions in a given disease network. Kun-Yi Hsin

et al [18] proposed a new computational method, which combines two machine learn-

ing models carefully developed with multiple docking packages to evaluate the binding

potential of a test compound to proteins involved in complex molecular networks. The

prediction model obtained good prediction results. Francisco et al [19] presented a ap-

proach for identifying DTIs, which used molecular 2D descriptors to generate drug fea-

ture vectors. Chen et al [20] developed an effective classifier to detect DTIs by

integrating the chemical-protein connections information and chemical-chemical simi-

larities information. Yan et al [21] proposed a new feature extraction method, which

used the similarity of drug chemical and target protein sequence to represent drug-

target pairs. The random forest was employed to carry out prediction. Zhang at el [22]

proposed a ensemble learning algorithm to boost performance of previous DTIs predic-

tion methods through employing the SVM classifier to integrate the prediction results

of previous methods. In spite of this, it is very important for researchers to develop effi-

cient and robustness computational methods for improving prediction accuracy of

identifying DTIs.

In the paper, we proposed a novel computational method called WELM-SURF based

on drug fingerprints and protein evolutionary information for identifying DTIs. More

specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix

(PSSM) is applied to capturing protein evolutionary information and Speed up robot

features (SURF) is employed to extract sequence key feature from PSSM. For drug fin-

gerprints, the chemical structure of molecular substructure fingerprints was used to

represent drug as feature vector. Take account of the advantage that the Weighted Ex-

treme Learning Machine (WELM) has short training time, good generalization ability,

and most importantly ability to efficiently execute classification by optimizing the loss

function of weight matrix. Therefore, the WELM classifier is used to carry out classifi-

cation based on extracted features for predicting DTIs. The performance of the

WELM-SURF model was evaluated by experimental validations on enzyme, ion

An et al. BioData Mining            (2021) 14:3 Page 3 of 17



channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test.

The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on

enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also com-

pared our performance with the Extreme Learning Machine (ELM), the state-of-the-art

Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting

methods on four datasets. By comparing with experimental results, the performance of

WELM-SURF is significantly better than that of ELM, SVM and other previous

methods in the domain. The results demonstrated that the proposed WELM-SURF

model is competent for predicting DTIs with high accuracy and robustness. It is antici-

pated that the WELM-SURF method is a useful computational tool to facilitate widely

bioinformatics studies related to DTIs prediction..

Method
Datasets

In the work, we evaluate the performance of the WELM-SURF model on four datasets:

enzymes, ion channels, GPCRs and nuclear receptors. They can be downloaded from the

KEGG BRITE [7], BRENDA [23], SuperTarget [8] and DrugBank [9] databases and de-

fined as the gold standard datasets by Yamanishi [24]. The number of known drugs for

enzymes, ion channels, GPCRs and nuclear receptors are 445, 210, 233 and 54 and the

count of known target protein are 664, 204, 95 and 26. After carefully screening, 5127

drug-target pairs can interact with each other. There are 2926, 1476, 635, and 90

known interactions involving enzymes, ion channels, GPCRs, and nuclear receptors.

Therefore, we constructed positive samples for each of the four datasets.

Usually, a bipartite graph was used to represent Drug-target interaction network,

where each node represent drug molecules or target protein, and each edge describes

true drug-target interactions valeted by biological experiments or other methods. As

can be seen from the bipartite graph, the numbers of real drug-target interactions edges

are small [25]. Here, we take the enzyme dataset as an example, there are 295,480 con-

nections (445 × 664) in the corresponding bipartite graph, of which only 2926 edges are

known drug-target interactions. Therefore, the possible count of negative samples

(295480–2926 = 29,255) is significantly larger than the number of positive samples

(2926). As a result, this will lead to a bias problem. For addressing this problem, we

randomly selected the same number of negative and positive samples. Therefore, the

number of negative samples for the enzyme, ion channel, GPCRs, and nuclear receptor

are 2926, 1476, 635, and 90, respectively. In fact, there may be the real drug-target pairs

among these negative sample sets. However, take account of the large scale of the

bipartite graph, the number of true interaction pairs defined as the negative pairs is

very small.

Feature extraction

Drug molecules description

Recently, a number of biological experiments have indicated that drugs with similar

chemical structure have similar therapeutic functions. In order to represent drugs as

feature vectors, several kinds of descriptors have been designed, such as, molecular sub-

structure fingerprints, constitutional, topological, geometrical and quantum chemical
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properties. In the paper, the chemical structure of molecular substructure fingerprints

was used to represent the drugs as drug feature vectors [15]. Each molecular structure

is translated into a fingerprint of a structural by using the molecular fingerprints

method. This make it can be defined as an 881 dimensional binary vector and its corre-

sponding bits is 1 or 0.

Position specific scoring matrix (PSSM)

Due to proteins are functionally conserved, the prediction performance can be im-

proved by using the evolutionary information of protein sequence. The position-

specific scoring matrix (PSSM) contains not only the position information of the pro-

tein sequence, but also the evolution information that reflects the conservative function

of protein. In the experiment, each protein sequence was converted a L × 20 PSSM by

using Position Specific Iterated BLAST (PSI-BLAST) tool [26], where L represents the

length of different protein sequences. Therefore, we employed the PSSM for extracting

the sequence evolutionary information because of its advantage in the paper. The dia-

gram of PSSM is displayed in Fig. 1.

Where 20 are 20 different amino acids, Pij represent the probability that the ith amino

acid in the sequence is mutated to the jth type amino acid during biological evolution.

The Pij is greater than 0, equal to 0 and less than 0. If the Pij is a positive number that

indicates the ith amino acid can be easily mutated to the jth amino acid. In practice, the

larger number of Pij means a higher mutation probability. Conversely, if Pij is negative

number, it means the mutation probability is small, and a smaller Pij number indicates

more conservative. For using evolutionary information of protein sequences to capture

more key features, we converted each protein sequence into a PSSM through employ-

ing PSI-BLAST tool. In the experiment, we set the parameter of PSI_BLAST’s e-value

is 0.001 and selected three iterations for obtaining widely and highly homologous

sequences.

Speed up robot features (SURF)

Speed up robot features (SURF) [27] feature extraction algorithm is an improvement of

Scale Invariant Feature Transform (SIFT) algorithm [28, 29], which runs faster than

SIFT in algorithm execution efficiency. The SIFT uses Gaussian differences to approxi-

mate Laplace Gauss distribution to find scale space. However, the SURF uses Box Filter

to approximate LOG. The major advantage of SURF is that it is easier to calculate the

Fig. 1 The diagram of PSSM
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convolution with the box filter by using the integrated image, which can be done in

parallel at different scales. The execution of the SURF algorithm depends on the deter-

minant of the Hessian matrix and the determinant of the position. The SURF algorithm

includes the following two steps: feature point detection and feature adjacent

description.

Feature point detection

The SURF uses continuous Gaussian filters of different scales to process image and de-

tects feature points of mesoscale invariant through Gaussian differences. SURF can rep-

resent Gaussian fuzzy approximation by using the square filter to replace the Gaussian

filters of SIFT. The SURF feature extraction approach can convert a image into sets of

vectors IJ ∈ R
d, j = 1, …, N, where N is a number of images and Ij = {f1, f2,…fm} and f m

¼ f f 1m; f 2m;…: f dmg , where m is a number of local features in each image and d is the

SURF features dimension that is equal to 64. The fm represent the SURF local features,

note that the m values are not same in all images. We want to organize Ij into K clus-

ters c = {c1, c2,…ck}. The similarity criterion then is defined as follow equation:

S x; yð Þ ¼
Xk
i¼1

Xn
j¼1

aj
i sim I j;mj

� �

Where x ¼ faj
ig is separation matrix, a ji ¼ 1; if a ji∈clusters

0; otherwise

�
with

Pk
i¼1

Pn
j¼1a

j
i ¼ 1

∀ j; y = { m1, …, mk }, sim(Ij,mj) represents how the correspondent features can be cal-

culated between the two sets of local features.

The square filter can greatly improve the computation speed through using in-

tegral graph that only calculates the value the four corners of the square filter.

The determinant value of hessian matrix represents the change around pixel

points. Since SURF USES hessian matrix of spot detection to identify feature

point whose value should be defined as the maximum or minimum value of de-

terminant. In addition, in order to achieve scale invariance, SURF also USES the

determinant of scale σ to carry out detection of feature point. For example, given

a point p = (x, y) in the graph, the Hessian matrix of scale σ is can be repre-

sented as follows:

H p; σð Þ ¼ Lxx p; σð Þ Lxy p; σð Þ
Lxy p; σð Þ Lyy p; σð Þ

� �

Where the Lxx(p, σ) , Lxy(p, σ), Lxy(p, σ) and Lyy(p, σ) are the gray-order image after

the second order differentiation. The SCALE of SURF isn’t continuous Gaussian ambi-

guity and down sampling processing. On the contrary, it is determined by the size of

square filters. The lowest scale (initial scale) of square filter of is 9 × 9, which is ap-

proximately σ =1.2 Gaussian filter. The size of the upper scale filter will get larger and

larger, such as 15 × 15, 21 × 21, 27 × 27…

The transformation formula of its scale is as follows:
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σapprox ¼ Currentfiltersize� BaseFilterscale
BaseFilterSize

� �

Feature adjacent description

The descriptor of SURF uses the concept of Hal wavelet transform. In order to en-

sure the rotation invariance of feature point, each feature point is assigned a direc-

tion. The SURF descriptors calculate the Hal wavelet transform of 6σ pixels of

direction of X and Y around feature point. A vector can be obtained by add com-

ponents of corresponding X and Y of the wavelet in each interval. The longest (the

largest X and Y components) of all vectors is the direction of the feature point.

After the direction of the feature point is selected, the descriptor of feature point

can be created by using the direction of surrounding pixels. For example, the 5 × 5

pixel points were defined as a sub region. As a result, a number of 16 sub regions

can be generated by extracting the range of 20*20 pixel points around the feature

point and the ∑dx and ∑ dy of the Hal wavelet transform in the X and Y directions

within the sub region can be calculated. Finally, a feature vector with dimensional

64 can be generated.

In the experiment, we used SURF method to create feature vectors whose dimen-

sional is 64. Figure 2 shows the flow diagram of our method.

Weighted extreme learning machine (WELM)

Zong et al [30] proposed a Weighted Extreme Learning Machine (WELM) based on

Extreme Learning Machine (ELM). In order to efficiently predict DTIs, we build the

WELM model based on ELM. The network structure of ELM is as follows (Fig. 3):

Assuming there are n training samples fxi; tigni¼1 , where xi = {xi1, xi2, xi3,……xin}
T ∈

Rn, ti = {ti1, ti2, ti3,……tin}
T ∈ Rm, n represents the number of sample and m is the classi-

Fig. 2 The technology roadmap of the proposed feature extraction method
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fication number. The output model of feedforward neural network with L hidden layer

nodes can be expressed as follows:

XL

h¼1
βhG ah; bh; xð Þ ¼ oi; i ¼ 1; 2; 3;……;N ð5Þ

Where βh is the output weight of the hth hidden layer neuron, G represents activation

function of hidden layer neuron, ah and bh is defined as the input weight and biases of

hidden layer neuron, x is input samples, oi represents the actual output value of ith
training sample, ti is the expected output of ith training sample. According to the litera-

ture [15], there are N training samples fxi; tigni¼1 , xi ∈ R
n. There are (ah, bh) and βh,

which make
PL

i¼1jjoi − tijj ¼ 0 and single-hidden layer feedforward network (SLFN)

can approach the training set fxi; tigni¼1 , xi ∈ R
n with zero error. The eq. 1 can be sim-

plified as follow:

Hβ ¼ T ð6Þ

Where H and β are the output matrix and the output weight matrix of the hidden

layer respectively and T is the expected output matrix corresponding training samples.

The output weight of the hidden layer can be expressed as follow:

Fig. 3 The network structure of ELM
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β̂ ¼
HT I

C
þ HHT

� � − 1

T ;N < L

I
C
þ HTH

� � − 1

HTT ;N ≥L

8>>><
>>>:

9>>>=
>>>;

ð7Þ

The output function of ELM can be defined as follow:

f xð Þ ¼ h xð Þβ̂ ¼
h xð ÞHT I

C
þ HHT

� � − 1

T ;N < L

h xð Þ I
C
þ HTH

� � − 1

HTT ;N ≥L

8>>><
>>>:

9>>>=
>>>;

ð8Þ

WELM has two weighting strategies [31], one is automatic weighting and can be de-

fined as follow:

w1 ¼ 1
Count tið Þ ð9Þ

Where Count(ti) represents the number of class t in the training sample. The other

sacrifices the classification accuracy of the majority class for obtaining the classification

accuracy of the minority class. This splits the minority class and the majority class into

0.618: 1(golden ratio) and is defined as follow:

w2 ¼
0:618

Count tið Þ ; ti∈majority class

1
Count tið Þ ; ti∈minority class

8>><
>>:

9>>=
>>;

ð10Þ

The output weight of WELM hidden layer can be represented as follow:

β̂ ¼ H − T
HT I

C
þWHHT

� � − 1

WT ;N < L

I
C
þHTWH

� � − 1

HTWT ;N ≥L

8>>><
>>>:

9>>>=
>>>;

ð11Þ

Where the weighting matrix is a N ×N diagonal matrix, and the N diagonal elements

correspond to N samples. Different weights are assigned to different sample classes,

and the weighting weights of the same class are the same.

The WELM has the advantage of short training time and good generalization ability

and can efficiently execute classification by optimizing the loss function of weight

matrix. As a result, the WELM classifier was used to predict DTIs by employing the

automatic weighting strategy. The prediction flow diagram of WELM-SURF model is

shown in Fig. 4.

Performance evaluation

The following measures were used to evaleeuate the prediction performance of

WELM-SURF in the work.

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð12Þ

TPR ¼ TP
TP þ TN

ð13Þ

An et al. BioData Mining            (2021) 14:3 Page 9 of 17



PPV ¼ TP
FP þ TP

ð14Þ

MCC ¼ TP � TNð Þ − FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp ð15Þ

Where Acc represents Accuracy, TPR is Sensitivity, PPV is Precision and MCC repre-

sents Matthews’s correlation coefficient. TP and TN represent the count of real inter-

action and real non-interaction protein sequence pairs correctly predicted. FP and FN

is the number of real non-interaction and real interaction protein sequence pairs mis-

takenly predicted. Meanwhile, Receiver Operating Curve (ROC) was employed to fur-

ther assess the prediction performance of WELM-SURF in the work.

Results and discussion
Performance of the proposed method

In the experiment, we evaluate the prediction ability of our WELM-SURF model on

four benchmark dataset enzyme, ion channels, GPCRs and nuclear receptor. Generally

overfitting will affect experimental results. Therefore, the whole dataset was randomly

divided into five parts; four parts were used as training dataset and the other part was

selected as testing dataset. In addition, in order to ensure fairness, fivefold cross-

validation tests was employed to evaluate the performance of the WELM-SURF and

several parameters of the WELM model were optimized through using the grid search

method. Here, we selected the ‘Sigmoid’ function and the ‘Gaussian ‘kernel as the map-

ping functions of the hidden nodes and set up Number of Hidden Neurons = 2500, C =

160 and other parameters were set up the default value. The prediction results are

shown in Tables 1, 2, 3 and 4 using the WELM-SURF prediction model.

Fig. 4 The prediction flowchart of WELM-SURF

Table 1 Fivefold cross validation results shown using WELM-SURF method on enzyme

Testing set Acc (%) TPR (%) PPV (%) MCC

1 93.85 95.65 92.95 88.28

2 92.56 92.93 92.14 86.23

3 93.59 93.53 93.69 88.00

4 94.19 95.81 93.40 88.99

5 93.52 95.00 92.14 87.87

Average 93.54 ± 0.61 94.58 ± 1.30 92.86 ± 0.71 87.89 ± 1.03
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It can be observed from Tables 1, 2, 3 and 4 that the average Accuracy for enzymes,

ion channels, GPCRs and nuclear receptors is 93.54, 90.48, 85.43 and 77.45% respect-

ively. The corresponding average Sensitivity is 94.58, 91.76, 84.46 and 80.67%, respect-

ively. The corresponding average Precision is 92.86, 89.67, 86.23 and 76.50%,

respectively. At the same time, the average Matthews’s correlation coefficient is 87.89,

82.91, 75.17 and 64.22%, respectively. These experimental results proved that good pre-

diction performance for DTIs prediction can be achieved by using the WELM-SURF

model.

The good experimental results for predicting DTIs are mainly attributed to use the

SURF feature extraction method and WELM classifier. The main advantage of the

WELM-SURF model is that SURF method can extract key evaluation feature from

PSSM and employed chemical structure of the molecular substructure fingerprints to

represent Drug feature and WELM classifier has the advantage of processing sequence

data. As discussed, this is mainly due to the following three reasons: (1) The PSSM

contains not only the position information of the protein sequence, but also the evolu-

tion information that reflects the conservative function of protein and a number of

prior information. Therefore, it can provide a certain help in extracting evolutionary in-

formation of protein sequence. Meanwhile, the chemical structure of the molecular

substructure fingerprints was use to represent Drug key feature information. (2) SURF

can improve computational speed compared to SIFT. The main advantage of SURF that

it uses the concept of “scale space” to capture features at multiple scale levels, which

not only increases the number of available features but also makes the method highly

tolerant to scale changes. This makes it can capture DTIs information and extract high

efficiency features from PSSM. (3) The WELM has the advantage of short training time

and good generalization ability and can efficiently execute classification by optimizing

the loss function of weight matrix. Therefore, WELM is used to carry out classification

Table 2 Fivefold cross validation results shown using WELM-SURF method on ion channels

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 88.98 93.26 84.12 80.31

2 92.54 91.47 93.38 86.19

3 90.68 90.59 90.28 83.08

4 89.32 89.91 90.19 80.82

5 91.39 93.59 90.40 84.17

Average 90.48 ± 1.47 91.76 ± 1.62 89.67 ± 3.38 82.91 ± 2.42

Table 3 Fivefold cross validation results shown using WELM-SURF method on GPCRs

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 83.07 80.95 84.30 71.84

2 88.58 86.18 89.83 79.71

3 87.40 88.00 86.81 77.97

4 84.25 85.83 83.21 73.45

5 83.86 81.34 87.20 72.88

Average 85.43 ± 2.41 84.46 ± 3.14 86.23 ± 2.60 75.17 ± 3.46
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and performs much better for identifying DTIs in the study. More specifically, the

WELM can better perceive the distribution information of class by assigning larger

weight to the minority class samples and push the separating boundary from the mi-

nority class towards the majority class through using weight strategy. This makes it can

provide help in sensitive learning by assigning different weight. The results demon-

strated that the proposed WELM-SURF model can improve prediction accuracy and is

fit for predicting DTIs.

Comparison with the ELM-based and SVM-based method

Despite the proposed WELM-SURF approach obtained good prediction results. How-

ever, in order to further evaluate the prediction capacity of WELM classifier, we com-

pared its prediction ability with the ELM and the SVM by using SURF feature

extraction method on enzyme and ion channel datasets. The LIBSVM tool [32] of the

SVM was employed to carry out classification. At the same time, for fair comparison,

several parameter of ELM were optimized through employing the same grid search

method. More specifically, the number of hidden layers of ELM is set to 89 and other

parameters take the default value. At the same time, the RBF kernel parameters of the

SVM were optimized by using the same strategy, where c = 0.6 and g = 3.1 and other

parameters were set up the default value.

Table 5, 6, 7 and 8 list the statistical prediction results of fivefold cross-

validation tests on enzyme and ion channels by using ELM classifier and SVM clas-

sifier, respectively. At the same time, the comparison of ROC Curves between

WELM, ELM and SVM was also displayed in Fig. 5 and Fig. 6 on enzyme and ion

channels datasets, respectively. It can be observed from Tables 5 and 6 that average

accuracy of 90.38 and 87.07% obtained using ELM classifier and SVM classifier on

enzyme dataset, while the WELM classifier achieved 93.54% average accuracy.

Table 4 Fivefold cross validation results shown using WELM-SURF method on nuclear receptor

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 70.56 76.47 65.00 57.23

2 75.00 80.00 76.19 61.73

3 77.38 75.00 90.00 63.25

4 77.78 93.33 66.67 64.44

5 86.11 78.57 84.82 74.47

Average 77.45 ± 5.67 80.67 ± 7.33 76.50 ± 10.92 64.22 ± 6.35

Table 5 Fivefold cross validation results shown using ELM-SURF method on enzyme

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 90.75 90.81 90.57 83.20

2 89.85 88.82 90.22 81.74

3 89.58 90.37 89.19 81.33

4 90.46 90.08 90.82 82.68

5 91.26 91.23 91.22 83.55

Average 90.38 ± 0.68 91.26 ± 0.91 90.38 ± 0.74 82.74 ± 1.27
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Similarly as shown in Tables 7 and 8, 87.76% average accuracy and 83.30% average

accuracy are obtained through using ELM classifier and SVM classifier on ion

channels dataset. The WELM classifier achieved 90.48% average accuracy. It can be

seen from comparison results that the prediction capacity of the WELM classifier

is significantly better than that of the ELM and the SVM classifier. Similarly, we

also can find from Fig. 5 and Fig. 6 that the ROC curves of the WELM classifier is

also obviously better than the ELM and the SVM classifier. These good comparison

results obtained may be lie in as follows reasons: The significantly advantage of

WELM classifier related to the ELM classifier and the SVM Classifier is that it has

the advantage of short training time and good generalization ability and can effi-

ciently execute classification by optimizing the loss function of weight matrix, and

can provide a certain help in sensitive learning by assigning different weight.

Therefore, experimental results indicated that the proposed prediction model might

become useful tools and can identify DTIs with a high prediction accuracy.

Comparison with other methods

In the paper, for further evaluating the prediction capacity of WELM-SURF

method, we compare our performance with four existing DIIs predictor DBSI [33],

Yamanishi [24], KBMF2K [34] and NetCMP [35] on enzyme, ion channels, GPCRs

and nuclear receptor dataset. These comparison results are displayed in Table 9. It

can be seen from Table 9 that our prediction accuracy is obviously better than that

of other four methods. The comparison results are strong evidence that the

WELM-SURF is efficiently and robustness related to current exiting approaches.

The results also demonstrated that the proposed WELM-SURF model is competent

for predicting DTIs with high accuracy and robustness. It is anticipated that the

WELM-SURF method is a useful computational tool and is suitable for predicting

Table 6 Fivefold cross validation results shown using SVM-SURF method on enzyme

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 87.78 87.30 87.14 78.50

2 87.86 85.17 89.82 78.63

3 86.84 83.48 89.58 77.09

4 85.73 83.71 88.72 75.48

5 87.12 85.34 88.24 77.53

Average 87.07 ± 0.86 85.00 ± 1.53 88.70 ± 1.08 77.45 ± 1.28

Table 7 Fivefold cross validation results shown using ELM-SURF method on ion channels

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 88.51 83.32 89.75 77.98

2 87.78 82.78 88.58 76.98

3 88.16 83.78 89.65 77.95

4 87.36 81.55 89.01 78.60

5 87.06 80.07 88.40 79.21

Average 87.76 ± 5.86 82.22 ± 1.56 89.08 ± 0.61 72.19 ± 3.05
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DTIs. The main reason is that the WELM-SURF used a good classifier and devel-

oped a novel feature extraction method.

Conclusion
In the paper, we proposed a novel computational method called WELM-SURF, which

combines the Weighted Extreme Learning Machine (WELM) with Speeded up robust fea-

tures (SURF) to predict DTIs based on drug fingerprints and protein evolutionary infor-

mation. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45%

on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also com-

pared our performance with the ELM classifier and the SVM classifier on enzyme and ion

channels dataset and other exiting methods on four datasets. By comparing with experi-

mental results, the performance of WELM-SURF is significantly better than that of the

ELM, the SVM and other previous methods in the domain. This is mainly due to the fol-

lowing three reasons: (1) The PSSM contains not only the position information of the

protein sequence, but also the evolution information that reflects the conservative func-

tion of protein and a number of prior information. Therefore, it can provide a certain help

Table 8 Fivefold cross validation results shown using SVM-SURF method on ion channels

Testing set Acc (%) TPR (%) PPV (%) MCC (%)

1 83.56 86.89 78.91 72.40

2 82.37 84.30 80.98 70.94

3 81.19 80.84 80.56 69.43

4 82.37 82.33 84.47 70.85

5 86.99 87.50 87.78 77.31

Average 83.30 ± 2.23 84.37 ± 2.86 82.54 ± 3.57 72.19 ± 3.05

Fig. 5 Comparison of ROC curves performed between WELM, ELM and SVM on enzyme
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in extracting evolutionary information of protein sequence. Meanwhile, the chemical

structure of the molecular substructure fingerprints was use to represent Drug key feature

information. (2) SURF can improve computational speed compared to SIFT. The main

advantage of SURF that it uses the concept of “scale space” to capture features at multiple

scale levels, which not only increases the number of available features but also makes the

method highly tolerant to scale changes. This makes it can capture self-protein interaction

information and extract high efficiency features from PSSM. (3) The WELM has the ad-

vantage of short training time and good generalization ability and can efficiently execute

classification by optimizing the loss function of weight matrix. Therefore, WELM is used

to carry out classification and performs much better for identifying DTIs in the study.

More specifically, the WELM can better perceive the distribution information of class by

assigning larger weight to the minority class samples and push the separating boundary

from the minority class towards the majority class through using weight strategy. This

makes it can provide a certain help in sensitive learning by assigning different weight. We

can come to the conclusion that the proposed WELM-SURF model can obtain high pre-

diction accuracy and execute incredibly well for predicting DTIs. For the future study,

more effective feature extraction approaches and machine learning algorithms can be

developed for predicting DTIs.

Fig. 6 Comparison of ROC curves performed between WELM, ELM and SVM on ion channels

Table 9 Predicting ability of different methods on four Datasets

Dataset Our method BSI [33] Yamanishi [24] KBMF2K [34] NetCMP [35]

Enzymes 0.9354 0.8075 0.821 0.832 0.8251

Icon Channels 0.9048 0.8029 0.692 0.799 0.8034

GPCRs 0.8543 0.8022 0.811 0.857 0.8235

NuclearReceptors 0.7745 0.7578 0.814 0.824 0.8394
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