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Abstract

Background: In genome-wide association studies the extent and impact of confounding
due to population structure have been well recognized. Inadequate handling of such
confounding is likely to lead to spurious associations, hampering replication, and the
identification of causal variants. Several strategies have been developed for protecting
associations against confounding, the most popular one is based on Principal Component
Analysis. In contrast, the extent and impact of confounding due to population structure in
gene-gene interaction association epistasis studies are much less investigated and
understood. In particular, the role of nonlinear genetic population substructure in epistasis
detection is largely under-investigated, especially outside a regression framework.

Methods: To identify causal variants in synergy, to improve interpretability and replicability
of epistasis results, we introduce three strategies based on a model-based multifactor
dimensionality reduction approach for structured populations, namely MBMDR-PC, MBMDR-
PG, and MBMDR-GC.

Results: Simulation results comparing the performance of various approaches show that in
the presence of population structure MBMDR-PC and MBMDR-PG consistently better
control type I error rate at the nominal level than MBMDR-GC. Moreover, our proposed
three methods of population structure correction outperform MDR-SP in terms of statistical
power.

Conclusion:We demonstrate through extensive simulation studies the effect of various
degrees of genetic population structure and relatedness on epistasis detection and propose
appropriate remedial measures based on linear and nonlinear sample genetic similarity.

Keywords: Epistasis, Population structure, Confounding, GWAS, GWAIS, MB-MDR, Gene-
gene interaction, Population stratification, Principal components
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Background
Genome-Wide Association Studies (GWAS) are an effective approach for identifying

genetic variants associated with disease risk [1]. In the context of such studies, popula-

tion stratification refers to systematic ancestry differences between cases and controls

[1]. The phenomenon is of particular concern in study designs with unrelated individ-

uals. In contrast, family-based genetic association studies offer protection from popula-

tion stratification, by using family data as internal controls, although at the expense of

some loss of power from genotypic overmatching [2, 3]. For case-control genetic asso-

ciation studies, spurious associations are caused by the co-occurrence of two factors: a

difference in the proportion of individuals from two (or more) subpopulations in cases

and controls, and subpopulations having differing allele frequencies at the locus under

investigation. This is in fact a special case of Simpson’s Paradox [4]. In general, this

statistical phenomenon causes a potential bias in data analysis and occurs when a rela-

tionship or association between two variables reverses when a third factor, called a con-

founding variable, is introduced. The paradox also occurs if an association reverses

when the data are aggregated over a third variable. Increasing the sample size is usually

not a remedy for this issue, but may worsen the problem [5]. Several causes exist for

population stratification. The basic one being shared genetic ancestry as a result of

non-random mating between subgroups in a population due to various reasons, which

may include social, cultural, or geographical ones. From an evolutionary point of view,

not only population stratification but also admixture (i.e., inter-mating between genet-

ically distinct groups) is created by human mating patterns. Potential consequences of

population stratification are confounding, cryptic relatedness (i.e., unobserved ancestral

relationships between individual cases and controls causing them to be non-

independent), and selection bias [6, 7].

In case/control GWA studies, several strategies have been introduced in the literature

for protecting against population structure mainly based on Principal Components

Analysis (PCA). In contrast, the extent and impact of confounding due to population

structure in gene-gene interaction studies are much less investigated and understood.

However, the growing interest in the importance of detecting gene-gene interactions in

the development and progression of complex diseases has led to the development of

several tools; to name but a few: generalized linear regression models (GLM), BOOST

[8], Model-Based Multifactor Dimensionality Reduction (MB-MDR) [9, 10], Multifactor

Dimensionality Reduction (MDR) [11], Random Forest [12], PLINK [13], BiForce [14],

Bayesian Models (e.g., BEAM) [15] and several others. For extensive reviews and appro-

priate references, please refer to [16–20]. However, the literature on epistasis detection

in structured populations is very limited, apart from scenarios using a regression frame-

work for association testing. On the other hand, Model-Based Multifactor Dimensional-

ity Reduction (MB-MDR) offers a general framework and software tool for epistasis

detection that can offer flexible maneuvering between different measurement scales for

phenotypes and genomic predictors [9, 10, 21]. The MDR-SP method [22] combines

MDR [11] with ideas implemented in the EIGENSTRAT software [23], a widely used

software in GWAS that detects and corrects for population stratification via PCA.

In this article, we introduce strategies to account for population structure in epistasis

studies using the MB-MDR framework. In particular, for the remainder of this article,

we restrict attention to case-control study designs (binary original traits) and biallelic
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Single Nucleotide Polymorphisms (SNPs) as genetic markers. We propose and fully de-

scribe three strategies: i) MBMDR-PC, ii) MBMDR-PG and iii) MBMDR-GC. In

MBMDR-PC, principal components (PCs) adjusted phenotypes but original genotypes

are used to detect epistatic SNP pairs, similar to [23]. In MBMDR-PG adjusted pheno-

types are obtained from fitting logistic mixed (polygenic) models on the original binary

trait, hereby allowing to adjust for additional structures such as those arising from fam-

ily relationships and cryptic relatedness. In MBMDR-GC, we follow principles of Gen-

omic Control correction in GWAS but allow for multi-locus adaptivity. These methods

are evaluated via extensive simulation studies which, to our knowledge, are unique in

that complex nonlinear population structures, in the form of structural epistasis, are

considered as well. Here, we let structural epistasis refer to the presence of interacting

markers driving population differences or population substructure. All proposed strat-

egies are formally compared to MDR-SP [22] in terms of type I error control and statis-

tical power. Our work is important as it highlights the impact of nonlinear genetic

population substructure on epistasis signal detection in GWAIS (Genome-Wide Asso-

ciation Interaction Studies).

Material and methods
All proposed genome-wide epistasis screening strategies in structured populations are

built on the Model-Based Multifactor Dimensionality Reduction (MB-MDR) method

[10, 24, 25], as implemented in version 4.4.1. Detailed descriptions are provided in the

aforementioned references. In a nutshell, MB-MDR was developed as a response to

MDR [11] to address the following important points in an epistasis analysis, including

1) the need to correct for lower-order effects and to adopt flexible null hypotheses (no

genetic effects whatsoever or no epistasis effects but possibly lower-order effects); 2)

the acknowledgment of multi-locus genotype combinations with little power or no evi-

dence towards increased or decreased disease risk; 3) the implementation of dimension-

ality reduction based on contrast testing of multilocus genotype combinations instead

of testing each multilocus genotype combination against a pre-specified threshold,

boosting performance in the presence of genetic heterogeneity. Even though the MB-

MDR framework can be used for higher-level interaction detection and various out-

come measurement scales and study designs, here we restrict attention to pair-wise in-

teractions with default settings, including lower-order genetic effects correction and

multiple testing correction via MaxT [10], unless specified otherwise. We describe the

newly introduced methods as follows.

MBMDR-PC: accounting for genomic structure by PCs

In MBMDR-PC, similar to EIGENSTRAT [23], we use either linear or nonlinear (ker-

nel) PCs to correct for population structure. The popular EIGENSTRAT software to

correct for population structure in GWAS contexts uses top linear PCs as covariates in

a multiple regression [23]. It is a common practice to take between 2 and 10 principal

components for correcting population structure in GWAS involving several countries.

Many ad hoc procedures and formal statistical tests exist to determine the optimal

number of principal components to correct for population structure [26] . Even though

linear PCA is most popular and adequate in most cases to capture ancestry genetic
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background, PCA may fail to capture nonlinear population structure in genetics as

shown in [27]. The nonlinear method developed by Alanis-Lobato and colleagues is

based on a non-centered Minimum Curvilinear Embedding (ncMCE) kernel. Whereas

the latter can better capture phylogenetic signals in samples, PCA better seems to re-

flect geographic dependencies [28]. Alternatively, kernel-based PCA can be adopted to

account for nonlinear structures in high dimensional genetics data. In case-control

epistasis studies, where the phenotype Y represents disease status (1 affected, 0 un-

affected), the newly adjusted phenotype Yadj
i can be computed by fitting a logistic re-

gression using the first few (linear or nonlinear) principal components (W1, ⋯, Wr)

and subtracting model-fitted values from observed phenotype values:

logit πið Þ ¼ αþ β1Wi1 þ⋯þ βrW ir;

Yadj
i ¼ Y i − π̂i;

where π̂i ¼
exp α̂þ β̂1Wi1 þ⋯þ β̂rW ir

� �

1þ exp α̂þ β̂1Wi1 þ⋯þ β̂rW ir

� � :

The newly adjusted phenotype Yadj is taken as input to classic MB-MDR, in an at-

tempt to capture genetic interactions that are not spurious due to inadequate handling

of population structures. Detail of the MBMDR-PC approach is outlined in [29, 30].

MBMDR-PG: accounting for genomic structure due to families and cryptic relatedness via

the extended polygenic model

Family structure or cryptic relatedness may induce phenotypic similarity between indi-

viduals and may confound gene-phenotype associations in GWAS when not properly

accounted for. Whereas PCs have proven useful in GWAS and structured populations

due to shared genetic ancestry, they are not suitable to adequately protect for the ef-

fects of familial or cryptic relatedness on GWAS [1]. With the recent developments of

computationally efficient algorithms, mixed models have become feasible in the context

of GWAS as well as GWAIS, in structured populations, whether this structure presents

population stratification, known or unknown relatedness. For quite some time, GWAS

for binary traits have been analyzed with linear mixed models, assuming that little harm

is done when sample sizes are in the thousands as is often the case with consortium

data [31]. However, Chen et al. [32] showed that linear mixed models are inappropriate

for analyzing binary traits when population stratification induces violation of the con-

stant residual variance assumption in linear mixed models. Therefore, these authors de-

veloped a computationally efficient logistic mixed model for binary trait GWAS in the

presence of population structure as well as familial and cryptic relatedness. In the same

spirit of the logistic regression models adopted before, a logistic mixed model that in-

cludes interaction effect between two SNPs can be defined as

logit πið Þ ¼ αþ γ1Gij þ γ2Gik þ θGijGik þ ϑi þ ε ;

ϑ � N 0; σ2
gΩ

� �
; and ε � N 0; σ2e

� �
;

where πi = P(Yi = 1|Gij,Gik, ϑ) is the probability of disease for subject i, conditional on

SNPs Gij, Gik and random effects ϑi. Here, ϑ is a N × 1 vector of random effects
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assumed to follow a multivariate Gaussian distribution, σ2
g is the additive genetic vari-

ance, and Ω is the genetic similarity matrix between all pairs of individuals (dimension

N ×N ) such that Ωil represents the similarity between individuals i and l. An estimate

of the genetic similarity matrix, Ω, is required which can be obtained from a large

number of genetic variants [33]. Fitting the model involves integrating over the random

effects vector ϑ with respect to the Gaussian distribution so that the likelihood is maxi-

mized with respect to the parameters fα; γ1; γ2; θ; σ2g ; σ2eg [34]. In MBMDR-PG we ob-

tain the adjusted phenotype from the residuals of fitting the logistic random effect

model using the R package GMMAT (Generalized Linear Mixed Model Association

Test) [32]. Then, similar to MBMDR-PC we use the adjusted phenotype as input for

interaction analysis with MBMDR.

MBMDR-GC: accounting for genomic structure via genomic control

The genomic control method introduced in [35] is computationally simple and fast to

control for population structure in case-control association studies. The key idea is to

divide the observed association test statistic by a single factor, λGC, which measures the

overall inflation in the association test statistic due to population stratification. The fac-

tor λGC can be estimated by dividing the mediums of the observed association test sta-

tistics across a set of markers by the theoretical median of the association test statistic.

Notably, corrective factors computed in this sense may turn out to be less than 1 and

may inflate observed test values rather than deflating them. Although genomic control

has proven useful in a variety of contexts, Price et al. [23] pointed out that the common

deflation factor applied to all SNPs where some SNPs differ in their allele frequencies

across ancestral populations more than others could lead to loss of power. As a solu-

tion, [36] considered test specific genomic control. MBMBDR-GC also employs test-

specific genomic control, adapted to the MB-MDR testing framework.

In MBMBDR-GC principles of classic GC in GWAS for structured populations are

adopted [23]. Large differences between several multi-locus genotype frequencies across

populations may lead to power loss when a single corrective inflation factor GC is used.

Therefore, in MBMDR-GC the definition of GC is adapted and the permutation null

data generated in MBMDR (step 3, Fig. 1) is exploited to estimate a test-specific GC

factor, similar to [36]. In particular, for the jth SNP-SNP interaction pair, the corrective

factor λGC, j is estimated as

λGC; j ¼ The median of observed interaction test statistics across all pairwise interactions
The expected median of the jth SNP − SNP interaction test statistic T j

; j ¼ 1;…; J ;

where J is the total number of pairwise interactions and for which the expected median

of the jth SNP-SNP interaction test statistic is computed from 1000 permutations under

a null distribution constructed by randomly permuting the phenotype values. Then the

adjusted test statistic for the jth interaction pair becomes Tj/λGC, j, which serve as input

to the MB-MDR multiple testing routines instead of their unadjusted counterparts.

Application on synthetic HapMap data

To assess type I error control and power performance of MBMDR-PC, MBMDR-PG, and

MBMDR-GC, and to compare it to MDR-SP [22], we set up a series of simulation
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settings, involving either unrelated or related individuals, as depicted in Fig. 1. Two main

strategies were adopted for our simulation study with unrelated individuals involving: 1)

HapMap data as a template with and without structural epistasis, 2) newly generated

discrete populations without a reference template, with and without structural epistasis

(referred to as model-based data). More detailed explanations are given next.

In summarizing the simulation results, type I error rates were obtained as the propor-

tion of the number of simulated datasets for which a pair of SNPs was found significant

at the 5% level after correcting for multiple testing. Similarly, the power was obtained

as the proportion of the number of simulated datasets for which only the functional

pair of SNPs was found significant at the 5% level after correcting for multiple testing.

Simulation setting 1: Synthetic data derived from HapMap in the absence of structural

epistasis

For each simulated set, we considered 200, 300, or 400 individuals, each time equal

proportions of cases and controls, and labeled 80% (40%) of controls (cases) as Euro-

pean (CEU) and 20% (60%) of controls (cases) as African (YRI). We followed the simu-

lation strategy adopted for MDR-SP [22] to generate genotype data with unlinked

SNPs. In particular, L ∈ {200, 400, 800}, independent SNPs were randomly selected from

the total number of SNPs from the pooled HapMap3 (CEU and YRI) data with quality

control (including only founders, HWE p-value threshold of 0.001, individual and geno-

type missing rates of 5 and 2%, respectively, minor allele frequency MAF > 0.05 and LD

pruning threshold of r2 = 0.75) (http://www.sanger.ac.uk/resources/downloads/human/

hapmap3.html), and minor allele frequencies were extracted for these two populations.

Genotypes were then generated under the assumption of Hardy-Weinberg equilibrium

(HWE). The genotypes for the L unlinked SNPs were subsequently used to compute

principal components and the first 10 principal were retained to capture population

substructure.

Since the aim of this study is not to evaluate multiple testing strategies but to evalu-

ate approaches for population structure control in epistasis, SNPs screened for epistasis

were generated as follows. A total of only 10 candidate SNPs were selected at random

from the available CEU and YRI SNP panels, with the restriction that the minor allele

Fig. 1 Flow of considered simulation settings
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frequency difference between CEU and YRI was larger than d ϵ {0.1, 0.3}. Genotypes for

unlinked null loci were generated as above. A total of 1000 replicates of null data (i.e.,

no association between SNPs and trait) were created by repeating the process above

1000 times and by randomly assigning individuals to disease. To be able to assess

power, each genetic replicate was appended with 2 functional SNPs. Disease status gen-

eration was based on 6 pure epistasis models (Supplementary material – Table S1).

These models are heavily used in the epistasis field, for instance, to evaluate MDR [37],

MDR-PDT [38], MBMDR [24], and MDR-SP [22]. They involve equal MAFs for func-

tional SNP pairs, with MAFs ∈ {0.50, 0.25, 0.10} and no main effects. We randomly se-

lected 2 SNPs from the pooled CEU and YRI HapMap data ensuring that the MAF in

the CEU population at each of the 2 SNP was within ±0.02 of the given MAF in the

chosen pure epistasis disease model. Two-locus genotypes for the functional SNP pair

were then generated, conditional on fixed and equal numbers of cases and controls

(100, 150, and 200) each. This process was repeated 1000 times.

Simulation setting 2: synthetic data derived from HapMap with structural epistasis

To introduce structural epistasis into our simulation study for GWAIS, we considered

four HapMap populations: 2 closely related populations CHB and JPT (FST = 0.007) and

2 distant populations CEU and YRI (FST = 0.153). Then, to detect epistasis via adjusting

nonlinear structural differences between these populations we applied the aforemen-

tioned MB-MDR methods for structured populations. We subsequently identified all

significant SNP-SNP interaction pairs, adjusted for main effects, and corrected for mul-

tiple testing with default options. Based on these results, several approaches were taken

to generate genotypes in the absence or presence of epistatic differences between popu-

lations. Approach 1: we generated 10,200 unlinked random genotypes including a) 10,

000 SNPs randomly generated from the pooled CEU, YRI, CHB, and JPT data, without

association to disease and population structure, similar to simulation set 1, and b) 100

pairs of SNPs randomly selected from the aforementioned significant pairs of SNPs re-

lated to population structure comparing CHB to JPT, and CEU to YRI. From these 100

pairs, we extracted the empirical proportion of corresponding 9 two-locus genotype

combinations. The associated penetrance functions were used to generate the add-

itional 200 unlinked genotypes, by conditioning on fixed sample sizes of {100, 250} from

each of the four populations. Approach 2: we simulated 110 candidate random geno-

types including a) 100 without association to disease with population structure similar

to Approach 1 -b) and 5 significantly interacting SNP pairs with population structure

similar to Approach 1 -b). Approach 3: Two functional genotypes were randomly se-

lected from the significant pairs that were found to be associated with population struc-

ture in such a way that the MAFs in the CEU and CHB populations at each SNP were

within ±0.1 of the given MAFs in the disease model (Supplementary Table S1). A total

of 1000 replicates were generated for total samples sizes of {400, 1000} and proportions

of cases and controls according to 60:40.

Unlinked genotypes obtained via Approach 1 were used to extract principal compo-

nents to control for population structure. The first 10 principal components were used

to capture population structure in epistasis analyses. Candidate genotypes generated via

Approach 2 were used to evaluate type I error rates of proposed population correction
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strategies in GWAIS, whereas functional genotypes as in Approach 3 were used in

methods power analyses. Various ways of computing principal components were imple-

mented to capture synthetic data underlying population structure. In particular, we

considered linear principal component analysis (linear PCA), as applied to genetic data

in [23], kernel PCA with a radial basis kernel, as implemented in the R package kernlab

(Kernel-Based Machine Learning Lab), and ncMCE (non-centered Minimum Curvilin-

ear Embedding) kernel-based PCA introduced in [27] as an alternative to capture non-

linear genetic differences between populations.

Simulation setting 3: model-based discrete populations in the absence of structural epistasis

Here, we simulated a large number of biallelic genotype frequencies for each individual in

subpopulations, using Balding-Nicholas models [39], similar to [35, 36]. First, an ancestral

allele frequency pa was randomly sampled from the uniform distribution in the interval

[0.05, 0.95]. Second, Wright’s coefficient of inbreeding FST was specified for the subpopu-

lations Fr ∈ {0.01, 0.03}, r = 1, 2. Third, the allele frequency pðrÞij of individual i for genotype

j in subpopulation r was simulated from a beta distribution with parameters pað Fr
1 − Fr

Þ and
ð1 − paÞð Fr

1 − Fr
Þ; r = 1, 2, i = 1, …, N and j = 1, …, M. Then, genotype values {0, 1, 2} were

simulated from a multinomial distribution with probabilities - computed without assum-

ing HWE - by f Ft p
ðrÞ
ij þ ð1 − FtÞðpðrÞij Þ

2

;
2ð1 − FrÞ pðrÞij ð1 − pðrÞij Þ; Frð1 − pðrÞij Þ þ ð1 − FrÞ

ð1 − pðrÞij Þ
2
; g (see [36] and references therein). We thus generated 1000 unlinked SNPs to

calculate principal components similar to [23]. Also, 100 SNPs were generated similarly

to the unlinked SNPs to evaluate type I error rates. For power comparison, two functional

SNPs were generated taking into account the six genetic disease models presented as sup-

plementary information (Table S1). This procedure was repeated 1000 times with total

samples sizes of {500, 1000} and proportions of cases and controls according to 60:40.

Simulation setting 4: model-based discrete populations in the presence of structural

epistasis

Instead of relying on a data-driven empirical penetrance table for structural epistasis as

before (Simulation setting 2), we considered a checker-board type of model as in

Table 1, which describes epistatic genetic differences between the populations using the

XOR model. In Table 1, the parameter β0 was taken to be the average penetrance (in

the absence of any genetic effect), whereas β1 captured the increase in penetrance when

having the specific 2-locus genotype. In our simulations we assumed β0 = 0 and β1 =

0.35 and 0.20 for populations 1 and 2, respectively. Then, we generated 1000 unlinked

random genotypes including a) 800 SNPs randomly generated similar to Simulation set-

ting 3 using FST in the two subpopulations Fr ∈ {0.001, 0.001}, r = 1, 2; b) 100 pairs from

Table 1 Checkerboard stratification penetrance models for structural epistasis
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each population similar to Simulation setting 2 (1b) using the population-specific pene-

trance values given in Table 3 with βj, 1 = β1 + ε, j = 1, …, 50, where ε is randomly drawn

from uniform (0, 0.05). To assess type I error rate, 120 SNPs are generated of which

100 similar to (a) and 10 pairs similar to (b). A total of 1000 replicates were generated

for total samples sizes of {200, 500, 1000} and proportions of cases and controls accord-

ing to two scenarios 60:40 and 80:20. This dataset was used to construct principal

components.

Simulation setting 5: simulating genotypes for related individuals

Inspired by [40], we simulated 1000 replicate datasets consisting of 250 nuclear families,

with the number of children drawn from a multinomial distribution with probabilities 1/4

to have one child, 1/2 to have two children, and 1/4 to have three children. On average,

this gave rise to 1000 individuals. To generate parental genotypes, we generated 10 bialle-

lic markers in linkage equilibrium and assuming Hardy-Weinberg equilibrium. The allele

frequencies of the functional SNP pair (SNP1, SNP2) were taken to be equal, and varied as

(p1, p2) = (p, p), p ∈ (0.1,0.25,0.5) . The allele frequencies of the 8 remaining non-functional

SNPs were fixed at pj = 0.1 + (j − 3)0.05, j = 3, …10. Children’s genotypes were assumed to

follow Mendelian inheritance patterns. Disease penetrance for parents and children was

based on Model M170, as discussed in [41]. This epistasis model is similar to Model 1 in

Table S1 (supplementary material). However, we fixed the total heritability h2 and the

proportion of the total variance explained by the two-locus model variance at 0.5 and

0.05, respectively. As family relationships may induce phenotype similarity, this simulation

setting was used to evaluate the performance of MBMDR-PG.

Results
Simulation setting 1

Type I error estimates obtained for simulation setting 1 via application of MBMDR-PC,

MBMDR-PG, MBMDR-GC, and MDR-SP to 1000 replicated samples are presented in

Table 2. In the case of a single homogeneous population (CEU only) none of the esti-

mated type I errors is significantly different from the nominal 0.05 FWER level, with a

95% confidence interval of (0.036, 0.064) [22]. This is the case, for all considered com-

binations of population structure correction methods, sample sizes, and number of

SNPs. In the case of structured samples (in particular, consisting of CEU and YRI),

MBMDR-PC estimated type I errors presented in Table 2 always follow Bradley’s liberal

criterion. In addition, it can be seen from Table 2 that all the estimated type I error

rates for MBMDR-PC are within the 95% confidence interval but it is not the case for

MDR-SP. However, many type I error rate estimates based on MBMDR-GC do not fall

within the 95% interval. The results of MBMDR-PG are similar to MBMDR-PC (results

not shown).

In Fig. 2, for allele frequencies difference d = 0.1 and European population percent-

age b = 40%, MBMDR-PC is significantly more powerful than MDR-SP under all

models considered in particular for small sample sizes. Moreover, MBMDR-PC outper-

forms MDR-SP even for large sample sizes in models 5 and 6. Notably, these epistasis

models are the toughest of the 6 considered Ritchie models in that they involve func-

tional SNP pairs with the lowest MAFs (0.10). As the sample size increases the power
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of both methods increases. We also included the power results of MBMDR-PG, which

are almost similar to MBMDR-PC. Similar results follow when d = 0.3 and b = 40%. In

addition, the results of power based on varying number of unlinked markers are in-

cluded in Fig. S1 (Supplementary material) that suggest there is not much difference in

the power of MBMDR-PC using 200, 400, and 800 unlinked markers for computing

principal components to control population structure in our data simulation.

Simulation setting 2

The estimated power of MBMDR-PC under the discrete population simulation set-

ting is shown in Fig. 3. The results show that MBMDR-PC has high power in all

scenarios of varying case-control proportions in all disease models with large sam-

ples. The power of MBMDR-PC is low for small sample sizes (100 samples from

Table 2 Estimates of Type I error for MBMDR-PC, MBMDR-GC, and MDR-SP, with a nominal 0.05
FWER level

b = 40%

Method Sample sizes Markers d = 0.1 d = 0.3

MBMDR-PC 200 200 0.050 0.046

400 0.051 0.051

800 0.046 0.048

300 200 0.046 0.047

400 0.047 0.049

800 0.049 0.047

400 200 0.050 0.053

400 0.051 0.054

800 0.048 0.046

MDR-SP 200 200 0.054 0.054

400 0.062 0.055

800 0.062 0.050

300 200 0.051 0.056

400 0.055 0.051

800 0.044 0.046

400 200 0.044 0.050

400 0.046 0.052

800 0.044 0.065

MBMDR-GC 200 200 0.059 0.058

400 0.061 0.065

800 0.064 0.067

300 200 0.060 0.065

400 0.062 0.071

800 0.063 0.068

400 200 0.066 0.069

400 0.061 0.071

800 0.063 0.066

Note: d denotes the difference of candidate allele frequencies in the two subpopulations, and b denotes the percentage
of cases from the European subpopulation
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each of the two populations) for disease models with moderate and small minor al-

lele frequencies. In general, the simulation results of varying case-control propor-

tions have no considerable impact on the power of MBMDR-PC method for large

samples of 1000 or more. The results of estimated Type I error rates for varying

proportions of cases and controls with and without main effect and principal com-

ponent corrections are displayed in Fig. S2 (Supplementary material). From this fig-

ure we see that MBMDR-PC performs well in controlling type I error rate at the

nominal 0.05 FWER level with and without main effects correction in all scenarios

of case-control proportions (Fig. S2 A and B). Use of the original MBMDR without

population and main effect corrections in case of structured population leads to in-

flated type I error rates (Fig. S2 D and C) in case of small samples and a large dif-

ference in case-control proportions.

Simulation setting 3

To evaluate the performance of MBMDR-PC in multiple subpopulations we evalu-

ate three principal component extraction methods: linear, kernel, and ncMCE. Pair-

wise PC-plots for the first three principal components computed from the unlinked

null SNPs are shown in Fig. 4. The plot of the first and the second PCs obtained

from linear PCA (Fig. 4 A1) fails to separate CHB and JPT populations. Similar

Fig. 2 Power estimates for MBMDR-PC (blue/solid line), MBMDR-PG (green/dashed line) and MDR-SP (red/dotted
line) under the six disease models based on simulated data on CEU and YRI populations with a difference of 0.3
minor allele frequency between the two populations. Percentage of cases and control from the CEU are 40 and 80%,
respectively. The power (y-axis) is computed using 10 candidate SNPs. PCs are computed from 200
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results were reported in [27]. However, the plot of the second and third linear PCs

(Fig. 4 A3) differentiate all four populations. In the case of kernel-based PCs, the

four populations are separable in any of the pairwise PC plots of the first three

kernel PCs (Fig. 4 B1-B3). On the other hand, the plot of the first versus the sec-

ond ncMCE based PCs (Fig. 4 C1) was able to reveal the hierarchical structure of

the four populations, reflecting the phylogenetics of these populations, as discussed

in Alanis-Lobato and colleagues [27].

As can be seen from Table 3, none of the considered simulation scenarios show

marked differences regarding type I error control or power to detect epistasis,

when using the first 10 PCs computed via linear, kernel, or ncMCE PCA methods

with MBMDR-PC. In contrast, type I error estimates are somewhat inflated with

MBMDR-GC. However, MBMDR-PC and MBMDR-GC give comparable power

estimates, except for epistasis models with low-frequency causal variants (Models

5 and 6).

Simulation setting 4

The scatter plot on the first 2 linear and kernel principal components for a single simu-

lated dataset (see Methods section) is shown in Fig. 6. Linear PCA indicates a nonlinear

Fig. 3 Power estimates according to varying proportions of cases and controls in six disease epistasis models
and variable sample sizes (200, 500, 1000). The percentage of cases in one of the two populations are shown
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genetic background structure (Fig. 5a). This is confirmed by kernel-based PCA, which

separates the two subpopulations (Fig. 5b).

The estimated results of type I error rates of MBMDR-PC using linear and ker-

nel principal components are presented in Fig. 6. In the presence of phenotypic

and structural epistasis, linear PCA-based MBMDR-PC highly inflates the type I

error which is substantially higher than the nominal 0.05 FWER level. For example,

for a total sample size of 500 (cases and controls jointly) and case-control ratios

60:40 and 80:20, the type I error rates of linear MBMDR-PC, at a nominal level of

0.05, are 0.7 and 1.0, respectively (Fig. 6a and b). Type I error rates of linear

MBMDR-PC increase as the sample size increases. Furthermore, type I errors esti-

mates get worse for linear PCA based MBMDR-PC with increasing levels of unba-

lancedness (Fig. 6b, 80:20). In comparison, the estimated type I error rates of

kernel-based MBMDR-PC are not significantly different from the nominal level

0.05 in all the scenarios considered.

Simulation setting 5

The estimated type I error rate for simulation setting based on related samples obtained

from 1000 replicates (as explained in the Methods section) is 0.051, which is close to

the nominal 0.05 level. Power estimates for epistasis model M170 (see Methods) in-

crease with increasing minor allele frequencies for the causal epistasis SNP pair (0.45,

0.885, and 0.911 for MAFs of 0.1, 0.25, and 0.5, respectively).

Fig. 4 Pairwise plots of the first three principal components computed using linear (A1-A3), kernel (B1-B3)
and ncMCE (C1-C3) PCA methods
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Discussion
In this work, we have highlighted the importance of detecting and correcting for popu-

lation structure in epistasis studies. Using extensive simulations we have shown that in

genome-wide epistasis studies inappropriate correction for complex population struc-

ture results in inflated false positives or low power to detect true signals of epistasis.

When evaluating the impact of ignored or inadequately captured population structure

in GWAIS, we not only considered epistatic ancestry informative markers but also paid

special attention to the idea of nonlinearity in population genetics [27]. Additionally,

Table 3 Estimates of power and type I error rates of MBMDR-PC with population structure
captured by linear, kernel, and ncMCE principal components and MBMDR-GC, with a nominal 0.05
FWER level

MBMDR-GC MBMDR-PC

Linear PCA Kernel PCA ncMCE

Sample sizes 200 500 200 500 200 500 200 500

Type I

Error Rates 0.077 0.085 0.052 0.054 0.054 0.050 0.047 0.055

Power

Model 1 0.945 0.735a 0.927 0.730a 1.000 0.740a 0.929 0.770a

Model 2 0.805 0.131a 0.846 0.404a 0.864 0.560a 0.895 0.556a

Model 3 0.653 0.954 0.658 1.000 0.731 0.970 0.669 0.968

Model 4 0.483 0.956 0.481 0.960 0.476 0.945 0.490 0.960

Model 5 0.074 0.784 0.259 0.950 0.238 0.950 0.258 0.958

Model 6 0.161 0.918 0.447 0.970 0.421 0.970 0.446 0.956
aThe values are close to 1 when the power is calculated based on all significant interactions that include the true signal

Fig. 5 Plots of the first two principal components (a) linear PCA and (b) kernel PCA
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we considered the influence of unequal sample sizes. As epistasis detection analysis

tool, we relied on MB-MDR, which should be seen as part of an entire analysis pipeline

that involves making marker selection choices and performing post-analysis steps to

validate and replicate findings, as well as seeking biological evidence for flagged inter-

acting regions [18].

That ignoring population structure due to allele frequency differences among popula-

tions and subpopulations can result in high numbers of false positives or reduced

power in GWAS is not new. In GWAS, Structured Association (SA) [42–45], Genomic

Control (GC) [35, 36], Principal Component Analysis (PCA) [23] and Mixed Modeling

(MM) [46] are the main 4 strategies to deal with confounding associations due to

shared genetic ancestry. The basic idea of SA is to infer the underlying population

structure and then to incorporate this information in subsequent testing for genetic as-

sociations of interest. In contrast, the basic idea of GC is to correct the null distribution

of genetic association tests for the effects of the unspecified population structure [35].

The statistical advantage of SA methods depends on the degree of information pro-

vided by the available marker data to make inferences about the true structure. Classic

GC methods rely on adjusting all marker-trait associations in the same way, which ig-

nores the strength of the relationship between the genealogy of the genetic marker

under study and the (hidden) pedigree structure, and thus also dependencies between

markers. The basic idea of MM for controlling population structure is to account for

pairwise relatedness between individuals, for example, using a kinship matrix. It is an

approach that naturally accommodates familial and cryptic relatedness in the data.

Mixed models have long been computationally expensive; it took until the development

of more efficient algorithms for them to gain popularity in population structure control.

Some of the algorithm improvements are incorporated in the following approaches:

compressed-MLM [46], EMMA (Efficient Mixed-Model Association) [47], EMMAX

(EMMA eXpedited) [48], GEMMA (Genome-Wide Efficient Mixed-Model Association)

[49], LRLMM (low rank linear mixed model [33], FaST-LMM (Factored Spectrally

Transformed Linear Mixed Model) [50], FaST-LMM-Set [51], GRAMMAR-Gamma

(fast variance components-based two-step method) [52], and FarmCPU (Fixed and ran-

dom model Circulating Probability Unification) [53]. PCA allows data transformation

Fig. 6 Estimated type I error rates for MBMDR-PC with case-control ratios (a) 60:40 and (b) 80:20. PC approaches
considered: linear PCA (blue bars), kernel PCA (green bars)
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to a new coordinate system such that the projection of the data along the first new co-

ordinate has the largest variance, the second principal component has the second lar-

gest variance, and so on. The relative straightforwardness of PCA, its ease of use, the

availability of efficient algorithms, and its ability to detect individuals with unusual or

differential ancestry [28, 54–58] has made PCA among the most heavily used strategies

in the context of genetic association studies in structured populations. Once principal

components are obtained, several choices can be made to use these for the purpose of

confounding correction in GWAS. Assuming that the GWAS is performed within a re-

gression framework, the most straightforward approach is to include the first few prin-

cipal components, capturing genetic ancestry of each individual, as fixed effects in a

(generalized) linear model. Alternatively, instead of directly including the principal

components in a regression model, both phenotype and genotypes can be adjusted

by top PCs as in EIGENSTRAT [23]. The adjusted phenotype is defined as the re-

sidual of fitting an appropriate generalized linear regression model of phenotype on

a number of principal components. A similar model fitting is performed to obtain

adjusted genotypes [12].

The aforementioned methods naturally extend to epistasis detection frameworks, in

particular those that allow for a regression model component in their methodology.

One such framework is MB-MDR (32), which adds a model-based component to Mul-

tifactor Dimensionality Reduction, hereby enabling adjusting for lower-order genetic ef-

fects or confounders (46). Our proposed methods for detecting epistasis in the

presence of population structure, MBMDR-PC, MBMDR-PG, and MBMDR-GC, build

on MB-MDR. MBMDR-PC and MBMDR-PG involve first deriving adjusted phenotypes

(residuals) obtained from fitting appropriate generalized linear models with the first

few principal components (linear or nonlinear) as covariates, and generalized linear

mixed models with a kinship matrix to capture the covariance structure of random ef-

fects, respectively. MBMDR-GC involves computing SNP-pair specific correction fac-

tors for each MB-MDR observed test value. This was inspired by earlier observations

that the distribution of MB-MDR test statistics may largely vary from one SNP-pair to

another due to a combination of disease prevalence and minor allele frequencies of

SNPs under testing (results not shown). The generated null data under the hypothesis

of no trait associations are used twice with MBMDR-GC: first to estimate the expected

MB-MDR test value for each SNP pair j under this null, and second to assess the statis-

tical significance of observed MB-MDR test values that are adjusted by λGC, j. With

equal MB-MDR test null distributions across SNP pairs, no genetic associations with

the trait and no population structure, the expected λGC, j should approximate 1. With

unequal MB-MDR test null distributions, observed test values will receive higher

chances to become significant with higher expected SNP-pair related median test

values, computed in the absence of genetic and confounder associations with the trait.

In general, our simulation results showed that in the presence of population structure

MBMDR-PC and MBMDR-PG consistently control type I error rate at the nominal

level compared to MBMDR-GC which had a slightly inflated type I error rate. Also,

our three methods of population structure correction were more powerful than MDR-

SP. Thus, MBMDR-PC and MBMDR-PG for GWAIS adjusted for confounding by

(non) linear population structure give promising results and are to be preferred over

MDR-SP in the considered simulation settings. Our results also suggested that there is
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no need to compute population controlling PCs for every SNP pair separately. For re-

lated samples, MBMDR-PG based on a generalized linear mixed model should be

used. In many instances of mild population structure, MB-MDR with codominant

correction exhibits comparable performance to MBMDR-PC. All analyses can easily

accommodate covariates using similar principles as in MBMBDR-PC and MBMDR-

GC.

Epistasis studies may benefit from consortium-based sample collections, where

large sample sizes can boost the power of epistasis detection. For instance, the

International Inflammatory Bowel Disease Genetics Consortium comprises data

from 68,427 samples in 15 countries [59]. However, large sample sizes may also in-

crease heterogeneity and possible interferences of population structure. To investi-

gate how type I error and power were affected by structured populations with

thousands of samples, we repeated simulation setting 1 (percentage of cases and

control from CEU being 40 and 80%, respectively, and differences in minor allele

frequencies of candidate SNPs in CEU and YRI being d = 0.3), this time with 10,

000 (instead of maximum 400) samples. Restricting to MBMDR-PC, type I error

remained controlled at 0.05; Power was estimated as 100% for Models 1 through 6.

Notably, MB-MDR was shown before to scale with increasing number of samples

[10]; however, alternative computation-time efficient algorithms may be required to

compute the principal components needed for capturing population structure in

large samples. Here, we used the R package Rspectra. Alternative packages in R in-

clude fastpca, flashpca, or bigpca.

The outperformance of MBMDR-PC depends on the ability of the principal compo-

nents to capture the population structure well. We chose the checkerboard stratifica-

tion model to inject strong nonlinear genetic differences between two populations;

more work is needed to investigate a variety of complex nonlinear stratification models

and to assess their occurrence in real-life. Overall, widely used linear PCA fails to prop-

erly differentiate such complex populations Kernel-based strategies offer an interesting

alternative, especially when additional efficient computational tools are developed to

extract non-linear PCs from large genetic datasets as those collected within disease-

specific consortiums. Our simulation results that compare MBMDR-PC with linear and

kernel PCs showed that MBMDR-PC with linear PCs gives inflated type I errors, which

becomes worse as the ratio of case-control becomes increasingly unbalanced. On the

contrary, MBMDR-PC based on kernel PCs effectively controlled for both linear and

non-linear population structure and maintained the type I error rates at the required

nominal levels.

In conclusion, MBMDR-PC is a generally well-performing approach, compared to the

computationally intensive MBMDR-PG and MBMDR-GC approaches, although its per-

formance is highly dependent on how well PCs capture population structure. There-

fore, we recommend using both linear and nonlinear versions of PCA, whenever

possible. Fast implementation for multiple testing correction in exhaustive epistasis

screenings [10] makes our proposed MB-MDR based methods efficient tools for GWAI

S in structured populations. Our work is important given ongoing initiatives of epistasis

detection in large-scale heterogeneous consortium data, as we have shown that inad-

equate capturing of population structure may severely jeopardize obtaining meaningful

and replicable epistasis findings.
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