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Abstract

Background: Aortic dissection (AD) is one of the most catastrophic aortic diseases
associated with a high mortality rate. In contrast to the advances in most cardiovascular
diseases, both the incidence and in-hospital mortality rate of AD have experienced
deviant increases over the past 20 years, highlighting the need for fresh prospects on
the prescreening and in-hospital treatment strategies.

Methods: Through two cross-sectional studies, we adopt image recognition
techniques to identify pre-disease aortic morphology for prior diagnoses; assuming
that AD has occurred, we employ functional data analysis to determine the optimal
timing for BP and HR interventions to offer the highest possible survival rate.

Results: Compared with the healthy control group, the aortic centerline is significantly
more slumped for the AD group. Further, controlling patients’ blood pressure and heart
rate according to the likelihood of adverse events can offer the highest possible
survival probability.

Conclusions: The degree of slumpness is introduced to depict aortic morphological
changes comprehensively. The morphology-based prediction model is associated with
an improvement in the predictive accuracy of the prescreening of AD. The dynamic
model reveals that blood pressure and heart rate variations have a strong predictive
power for adverse events, confirming this model’s ability to improve AD management.

Keywords: Aortic dissection, Pre-disease screening, In-hospital treatment, Image
recognition, Functional data analysis

Background
Among all aortic diseases, aortic dissection (AD) is one of the most catastrophic and is
associated with a high mortality rate [1–5]. In contrast to the drastic advances for most
cardiovascular diseases [6, 7], both the incidence and in-hospital mortality rate of AD
have increased over the past 20 years: the incidence has risen from 4.4 to 5.3 per 100
000 person-years from 1995 to 2015 [8], and the mortality rate has risen from 12% to
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14% from 1995 to 2013 [9]. There are three main reasons for this stagnation. First, the
asymptomatic nature of AD makes it difficult to diagnose until an acute and catastrophic
complication occurs [10]. Second, the blood pressure (BP) and heart rate (HR)monitoring
thresholds recommended by the Guideline of the European Society of Cardiology (here-
after the Guideline) are insufficient for capturing the dynamic characteristics of BP and
HR that are highly associated with the varied and complex nature of AD [11, 12]. Third,
population-based regulation fails to provide individualized treatment for patients with
different features [13, 14].
Our novel statistical methods offer practitioners fresh prospects for the prescreening

and in-hospital treatment of AD. Concretely, we begin by addressing the prescreening
stage of AD. According to the Guideline, prophylactic interventions for preventing AD
should be recommended when the ascending aortic diameter reaches 5.5 cm [15]. How-
ever, many mainstream researchers disagree with this recommendation, as it is based on
evidence from aortic aneurysm patients instead of AD patients [16]. More importantly,
studies have shown that an increase in aortic diameter is not closely associated with the
occurrence of type B AD (TBAD) – many patients who experience TBAD have normal
aortic diameters [17–21]. Since aortic morphological deterioration can create abnormal
biomechanical changes that result in AD, recent literature has started to use specific
attributes such as the centerline length [22–27] or the angle of aortic curvature [28, 29] as
predictors. Although these attributes have merits in reflecting deterioration from some
aspects, their measurements are sometimes subjective, and certain important risk fac-
tors can be overlooked, as AD can be caused by changes beyond arterial elongation or
abnormal helical flow in the ascending aorta [26, 30]. For example, Krüger et al. and
Heuts et al. used the length of the ascending aorta to predict type A AD (TAAD) and
found that length has superior diagnostic accuracy to diameter [22, 27]. However, there
is no evidence that this length is sufficient to predict TBAD. Alhafez et al. and Gode et
al. predicted AD with the vertex angle of a triangle drawn to connect the apex of the
aortic arch and the midlines of the ascending and descending thoracic segments of the
aorta [28, 29]. However, the places where the authors drew the triangle were subjective
and are challenging to replicate in practice. Additionally, the angle of the aortic curva-
ture cannot reflect other geometric changes, such as the elongation and tortuosity of the
dissected aorta.
Inspired by clinical evidence demonstrating that AD is mostly accompanied by elastin

breakdown and fracture of the aorta, we introduce the degree of slumpness to compre-
hensively capture the morphological changes of the vessel. To the best of our knowledge,
we are the first to propose a predictive model of AD that merges pure data-driven infer-
ence and expert perceptions (i.e., the abnormal changes in geometry often observed for
dissected aortas).
Assuming that AD has occurred, we then focus on the in-hospital treatment stage.

Similar to the aforementioned prophylactic intervention, the recommendation from the
Guideline (i.e., lowering AD patients’ systolic BP (SBP) to 100-120 mmHg and the HR to
60 bpm [10, 31]) is also based on facts from other medical fields and is not very effective
in AD clinical practice [13, 32], mainly due to the following reasons. First, the momentary
thresholds recommended here ignore the highly dynamic nature of BP and HR, which
plays a vital role in triggering cardiovascular events [33, 34]. Second, population-based
control thresholds fail to provide individualized BP and HR control for patients with
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different physical and clinical features. Thus, understanding that adverse events1 (AEs)
are highly related to wall stress changes on the diseased segment of the aorta, we con-
struct a predictive model using functional data analysis (FDA) to find the optimal timing
for BP and HR interventions that minimizes the likelihood of producing an AE.

Methods
Morphology-based prediction of AD using the aortic centerline

This prescreening study of AD was retrospective, multicenter, and cross-sectional. We
collected the CT scans of consecutive AD patients who underwent thin-cut (0.6-mm)
contrast-enhanced CT angiography (CTA) and of healthy individuals who underwent
thin-cut CTA or contrast-enhanced chest CT at two institutions (Shanghai Ninth People’s
Hospital Affiliated with Shanghai Jiao Tong University School of Medicine and the Vas-
cular Department of the First Affiliated Hospital of Anhui Medical University) between
January 2017 and December 2018.
To discern the differences in the shapes between healthy and dissected centerlines, we

first restored the predissected centerline from the observed centerline2 given the rela-
tive stability of the aortic centerline3 before and after the onset of AD [26, 43]. Then,
based on the principle of parsimony in statistical modeling, the 3D centerline is pro-
jected down to 2D from its aortic view (i.e., the left-anterior oblique 45-degree view for
most patients), which still sufficiently reveals the aortic morphology. Specifically, while
the shape of the aorta varies when viewed from different perspectives, as shown in Fig. 1,
the aortic view provides the largest unfolding shape and is the easiest in which to observe
a morphological change. In fact, the aortic view has been recognized as the most accu-
rate direction for observing the 2D centerlines in surgical planning and has been widely
applied in daily clinical practice [44, 45]. Moreover, compared with 3D centerlines, which
require high-priced reconstruction and analysis tools4, 2D centerlines can be easily drawn
using existing standard CT reconstruction software with little additional cost and thus are
accessible to a much larger population. The detailed patient inclusion and exclusion crite-
ria are discussed in Appendix A.1.1 in Additional file 1, and the data processing procedure
is visualized in Fig. 2.
Next, we numerically derived the slope curves from the 2D centerlines5 to separate the

healthy aortas from the dissected aortas. Four statistics–the average of the slopes, the
average of the absolute values of the slopes, the squared values of the slopes, and the
aortic tortuosity–were calibrated to characterize the degree of slumpness. These metrics
together provide a more generalized description of the aortic geometry than the pre-
ceding approaches. Particularly, the first three statistics measure the central tendency of

1We classify patients as experiencing an adverse event if any of the following progressive events of AD occur during
medical management: (1) fatal or nonfatal aortic rupture; (2) organ or limb ischemia; (3) aortic aneurysm formation
(defined as a maximum thoracic aortic diameter ≥6 cm); (4) rapid aortic growth (defined as a diameter increase of ≥10
mm within one year); and (5) death.
2The detailed restoration method is presented in Appendix A.1 in Additional file 1.
3The centerline morphology has been widely used in medical studies to predict disease [35–37]. In addition, because
measurement of the centerline is a necessary step for surgical protocols in clinical practice, current centerline extraction
methods are readily available and reliable [38–42]. Nevertheless, if the centerline approach does not work well, one
might try other machine learning methods, such as a convolutional neural network, which are currently popular in
medical studies. These methods may be more data-driven and capable of predicting AD using aortic images directly than
centerline measurement. However, a discussion of those approaches is beyond this paper’s scope, and we leave it to
future research.
4Mimics software with 3D measurement tools costs more than $12,000 with a maintenance package of $900 per year.
5Here, we define the slope curve as the collection of slopes of the tangent lines at each point on the centerline.
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Fig. 1 The shape of the aorta viewed from different directions. The shape of the aorta varies when viewed
from different perspectives. Aortic view (i.e., the left-anterior oblique 45-degree view for most patients) is
recognized as the most accurate direction to observe aorta in clinical practice

the direction and the steepness of the centerline [46–48], which reflect the elastin con-
tent of the aorta [49]. Tortuosity captures the irregular twists of the centerline [50–53]
and reveals whether the vessel is likely to be predisposed to hemodynamic damage [25].
Indeed, different from healthy aortic arches, which are rounded, dissected arches nor-
mally appear to be slumped from various directions, resulting in acute angles at different
positions. Figure 3 presents a typical conformation for dissected aortas that was initially
introduced by Ou et al., the gothic shape, where the aortic arch slumps from the upper
right (i.e., the dotted region in the figure), resulting in acute angulation between the
ascending and descending segments [49]. Because of the slumpness of the aorta, certain
segments of the dissected centerline become flatter, causing the first three statistics to be
smaller than those of the healthy centerline. Additionally, the slumped aorta is expected
to be more tortuous due to its elongation and asymmetrical flow profile. The detailed
attribute selection process and the approximation measures are presented in Appendix
A.2.1 in Additional file 1.
All variables are expressed as the mean ± standard deviation, and the two groups

were compared based on the two-sample Kolmogorov-Smirnov test. A two-tailed p-
value <0.05 implies that the statistics of the healthy and AD individuals are statistically
significantly different. Moreover, to ensure comparability between our findings and con-
ventional results, we fed these four statistics into a multivariable model6 and assessed
their discriminative performance with the area under the receiver operating character-
istic curve (AUC), the true positive rate (TPR), and the area under the precision-recall
curve (AUPRC). The threshold used to determine the TPR is that which yields the high-
est sum of sensitivity and specificity, and the baseline AUPRC is the ratio of positives (i.e.,
the number of AD patients) to the total sample size.

Dynamic regression analysis of adverse events of AD using FDA

This study of AD treatment was retrospective, multicenter, and cross-sectional. Clinical
data were obtained from AD patients from the two aforementioned institutions. Each

6The multivariable model used here is the logistic model, which is widely applied to assess the discriminative capability
of the risk factors associated with AD [54–58]
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Fig. 2 Data processing procedure. The data processing procedure of the 2D centerline includes two
sections. First, we restored the pre-dissected centerline from the CTA and projected the 3D centerline down
to a 2D centerline. Next, each graph was represented as a matrix

sample included BP and HR data from up to 14 days since all AD patients were either pre-
pared for emergency surgery after admission ormonitored for up to 14 days, when the flap
thickness and the growth of the aortic diameter stabilized. We elaborate on the detailed
patient inclusion and exclusion criteria and the definition and collection of clinical data
in Appendix A.1.2 in Additional file 1.
Here, we first examined the need to incorporate FDA to estimate the BP and HR

processes. Previous studies have cautioned us that when the underlying process is contin-
uous, there is no guarantee that it can be consistently estimated from the analysis based
only on its discrete counterpart [59–62]. Thus, continuous generalization is an essential
prerequisite when dealing with discrete time-series observations, including the BP and
HR processes in our context. In addition, many frequently used parametric models for
data indexed by time do not admit the temporal aggregation property such that their con-
tinuous generalization can lead to an indefinite number of different limits [63–65], and
failure in identifying the true limit can result in misspecification. Therefore, we adopted
the FDA approach7, which has been shown to automatically adapt to the correct limit and
recover the true underlying structure from discretely observed data [73–79].
We then used the estimated processes to model the association of BP and HR pat-

terns with the AE rate using the fitting functional generalized linear model (FFGLM).
Specifically, we used the patient outcome, which is either stable or experiencing AEs,
as the dependent variable; the independent variables included the functional BP and
HR processes and the non-functional clinical characteristics. This regression allowed
us to estimate the patient’s probability of encountering an upcoming AE based on the
observed physiological, physical, and clinical statistics. The complete estimation process
is illustrated in Appendix A.2.2 in Additional file 1.
For presentation purposes, we fixed all other variables at their means8 and demon-

strated the average marginal effects (AMEs) of unit increases in SBP, diastolic BP (DBP),
and HR on the AE rate. Two-tailed p-values <0.05 were considered to be statistically
significant. We compared the discriminative capability of our FFGLM and a traditional
linear model9 through the AUC, TPR, and AUPRC, where the baseline AUPRC equals the
fraction of positives (i.e., patients experiencing AEs) in the dataset. Similar to the FFGLM

7FDA has been widely applied in a large number of disciplines, such as biomedical science, medicine, economics, finance,
linguistics, psychology and sports [66–72]
8Different sets of figures can be produced with the controlled variables fixed at other values.
9Most studies predicting the probability of AEs in AD used the traditional linear model [11, 54–56, 58, 80–82], and we
are not aware of other state-of-the-art methods in this field.



Qiu et al. BioDataMining           (2021) 14:24 Page 6 of 13

Fig. 3 Comparison between healthy and dissected aortic centerlines (example). Illustrations of the degree of
slumpness of the healthy and dissected aortic centerlines. As shown, certain segments of the dissected
centerline become more flat and more slumped

model, the traditional linear model used the patient outcome as the dependent variable,
while its independent variables included all the non-functional clinical characteristics and
the shock variable10, which indicates whether a patient’s SBP is less than 80 mmHg with
organ hypoperfusion unresponsive to resuscitative methods or his/her HR is greater than
100 bpm [54–56, 58].

Results
Morphology-based prediction of AD using the aortic centerline

The AD group included 348 patients, and the healthy control group included 171 indi-
viduals. Table 1 shows that the average of the slopes, the average of absolute values of the
slopes and the squared values of the slopes for the AD group are all significantly lower
than those for the healthy control group, while the tortuosity is significantly higher for the
AD group. The AUC for our model was 0.743, and the TPR was 0.865 with a threshold of
0.580, implying that 86.5% of the AD patients in our sample can be correctly identified at
the chosen threshold. The AUPRC was 0.844, which is noticeably higher than the baseline
AUPRC of 0.671.

Dynamic regression analysis of adverse events of AD using FDA

A total of 458 AD patients were included in the second study, among whom 120 experi-
enced AEs and 338 remained stable. The AMEs of unit increases in SBP, DBP, and HR on
the AE rate are illustrated in Fig. 4. Taking Fig. 4a as an example, the curve describes the
AME of a unit increase in the SBP on the probability of experiencing an AE at different
time points. Specifically, the number of days the patient stayed in the hospital is repre-
sented on the x-axis, and the AME is represented on the y-axis. The detailed derivation
of the AME is discussed in Appendix A.2.2 in Additional file 1. A positive AME implies
that an increase in the SBP increases the likelihood of an AE, at which preventive inter-
ventions to control SBP improve the patient survival rate. In contrast, a negative AME
suggests that an increase in SBP decreases the likelihood of an AE, at which further SBP
controls are dispensable. Specifically, as illustrated in Fig. 5, on day two at midnight, a unit

10The use of shock is the most extreme case in incorporating BP and HR in AE predictions and thus provides the
strongest predictive power. Mainly, a patient is in shock when his/her BP and HR are such that his/her condition is no
longer reversible, and subsequent aggressive interventions can lead to serious complications.
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Table 1 Comparison between AD and control groups

AD group Healthy control group p-values

Average of Slopes 0.74 ±0.72 1.42 ±1.05 <0.001

Average of Absolute Values of Slopes 2.82 ±0.63 3.37 ±1.09 <0.001

Squared Values of Slopes 29.63 ±21.16 41.28 ±36.26 <0.001

Aortic Tortuosity 2.69 ±0.60 2.27 ±0.68 <0.001

increase in the SBP, on average, increases the probability of encountering an AE by 23.5%,
implying that the practitioners need to better control the patient’s BP. In contrast, on day
six at midnight, an increase in SBP, on average, decreases the probability of encountering
an AE by 24.2%, implying a reduction in the impact of aortic shear stress on AD pro-
gression, and no SBP intervention is required. Indeed, all three AME patterns cyclically
fluctuate around 0, and more volatile fluctuations are observed during the first seven days
than during the last seven days, especially for DBP, which is consistent with the natural
evolution of the dissected aorta.
Table 2 summarizes the AMEs of the change in non-functional determinants on the

change in the AE rate. Our results imply that treatments to modify controllable risk fac-
tors, including complicated AD, shock,Marfan syndrome, aortic diameter, and pericardial
effusion, can significantly increase patient survival rates and should be implemented if
possible. For instance, patients with Marfan syndrome, on average, have a higher proba-
bility of experiencing AEs, 21%, than other AD patients. The AUC and TPR of our model
were 0.839 and 0.808 (with a threshold of 0.223), respectively, both of which were larger
than those of the traditional linear model, 0.797 and 0.725 (with a threshold of 0.270). The
baseline AUPRC was 0.299, while that of our model was 0.668, and that of the traditional
model was 0.601.

Discussion
The first finding of this study demonstrates significant differences in aortic shapes
between healthy and AD patients. The lower values of the average of the slopes, the aver-
age of the absolute values of the slopes, and the squared values of the slopes for the AD
group are consistent with the pathological changes of elastin reduction in AD. The higher
value of tortuosity for the AD group coincides with the theory that increased tortuosity
is likely to predispose the vessel to hemodynamic damage [25]. Altogether, these results
indicate that the dissected aortic centerlines tend to be more slumped than the healthy
centerlines, which matches the observations in clinical practice.

Fig. 4 AME of increases in SBP; DBP; HR on changes in AE rate. a AME of increases in the SBP on changes in
the AE rate. b AME of increases in the DBP on changes in the AE rate. c AME of increases in the HR on
changes in the AE rate. AME = average marginal effect; BP = blood pressure; HR = heart rate; SBP = symbolic
BP; DBP = diastolic BP; AE = adverse event
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Fig. 5 AME of increases in the SBP on changes in AE rate (quantitative analysis). The figure presents the AME
of increases in the SBP on changes in the AE rate. AME = average marginal effect; SBP = symbolic blood
pressure; AE = adverse event

The second finding reveals that variations in BP and HR have a strong predictive power
for AEs. All three AME patterns are consistent with the J-shaped relationship between BP
and AEs found in clinical practice; the highest mortality rates are observed for patients
with SBP ≤ 100 mmHg or >180 mmHg [55], which confirms again that increases in BP
and HR are sometimes desirable. More specifically, during certain stages of AD, a rise
in BP can lead to further tearing of the aortic wall, resulting in severe aortic rupture
[11, 83]. In contrast, when the patient’s BP is relatively low, a further decrease in BP can

Table 2 AMEs of clinical characteristics on AE rate

Factor AME p-values 95% C.I.

Age -0.00 0.65 (-0.00, 0.00)

Male sex 0.11 <0.001 (0.01, 0.20)

Marfan syndrome 0.21 0.01 (0.05, 0.37)

Time from onset to admission -0.00 0.18 (-0.00, 0.00)

Family history of aortic disease -0.15 0.12 (-0.33, -0.01)

History of diabetes mellitus 0.04 0.65 (-0.13, 0.20)

History of hypertension -0.01 0.87 (-0.08, 0.07)

History of cardiovascular disease 0.03 0.51 (-0.06, 0.12)

Chronic renal insufficiency -0.16 0.04 (-0.32, -0.01)

Stanford type B AD -0.14 0.01 (-0.24, 0.04)

Complicated AD 0.12 <0.001 (0.04, 0.20)

Shock 0.13 <0.001 (0.04, 0.22)

Abdominal vessel involvement 0.12 <0.001 (0.04, 0.20)

Maximum aortic diameter ≥5.5 cm 0.09 0.04 (0.00, 0.18)

Arch vessel involvement 0.13 <0.001 (0.05, 0.21)

Pericardial effusion 0.15 0.01 (0.04, 0.25)

Pleural effusion -0.04 0.35 (-0.14, 0.05)
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lead to cerebral or visceral ischemia, which is the most common cause of AEs in AD
[84, 85]. Different from the Guideline recommendation, our algorithm allows for natural
fluctuations in BP and HR, and interventions are only advised when increases in the rate
of AEs are detected. Thus, with less antihypertensivemedication, the potential side effects
from the intake of those drugs can be reduced [13]. Additionally, the less volatile fluctua-
tions during the last seven days coincide with the natural evolution of the dissected aorta;
the impact of aortic wall stress on the progression of AD decreases in the natural transi-
tion from the acute to the chronic stage [86]. Moreover, since our model can predict the
occurrence of AE in advance, treatment can be implemented a priori to avert the irre-
versible damage induced by sudden increases in BP or HR [87]. In summary, our model
provides practitioners with guidance on the optimal timing for preventive interventions
for BP and HR to offer the highest survival rate.
A limitation of the present study is that the retrospective and observational nature of

the two investigations may have led to bias. In theory, the data should be collected from
a diverse group of volunteers, each with aortic CT records obtained over an extended
period and among them, some developed AD. However, due to the low incidence of AD,
such data are exceptionally rare in practice. To date, the most extensive dataset of this
kind includes 17 predissected CT scans out of the 579 observations and is used to assess
the role of aortic elongation in the prediction of TAAD [88]. Since our model adopts
more complicated metrics to investigate the risk factors for AD and deals with infinite
dimensions, such a small sample size is not adequate for analysis. It is also noteworthy
that our purpose was to discern the shape difference between the healthy and dissected
centerlines regardless of the initial factors, including but not limited to aging and genetic
history; thus, the direct comparison of the healthy and AD individuals is sensible in the
current context.
In addition, since both analyses are of infinite dimensions, the sample size was relatively

small. With a greater amount of available data, our estimators will converge to their true
values, and hence their predictive power will improve.

Conclusion
In this paper, we adopt novel statistical methods to shed light on the prevention and
treatment of AD, a fatal disease known for ages. Different from previous approaches that
can only address aortic deterioration from specific aspects, we introduce the term degree
of slumpness to depict aortic morphological changes comprehensively. Thus, practition-
ers can extract more information from CT scans at a lower cost for a larger population
so that patients with a tendency to suffer from AD can be detected in advance. Hence,
prophylactic treatment can be administered a priori to mitigate potential risk factors.
Moreover, our paper contributes to knowledge on the treatment stages of AD. The

dynamic model reveals that BP and HR variations have a strong predictive power for AEs.
This finding suggests that controlling patients’ BP and HR according to the likelihood of
the AE occurrence may provide the patient with the highest possible survival probability.
We are the first to incorporate image recognition techniques and FDA in predicting the

occurrence of AD and its AEs. This full set of studies of AD can provide practitioners with
insights into both its prescreening and real-time treatment. With further clinical trials,
our system has the potential to be operated without the presence of experts.
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et al. Assessment of short-term blood pressure variability in patients with ascending aortic dilatation. Clin Cardiol.
2015;38(12):757–62.

82. Seguchi M, Wada H, Sakakura K, Nakagawa T, Ibe T, Ikeda N, Sugawara Y, Ako J, Momomura S. Circadian Variation
of Acute Aortic Dissection Significance of Blood Pressure Dipping Pattern. Int Heart J. 2015;56(3):324–8.

83. Gupta PK, Gupta H, Khoynezhad A. Hypertensive emergency in aortic dissection and thoracic aortic aneurysm–a
review of management. Pharmaceuticals. 2009;2(3):66–76.

84. Gargiulo M, Massoni CB, Gallitto E, Freyrie A, Trimarchi S, Faggioli G, Stella A. Lower limb malperfusion in type B
aortic dissection: a systematic review. Ann Cardiothorac Surg. 2014;3(4):351.

85. Patel HJ, Williams DM, Dasika NL, Suzuki Y, Deeb GM. Operative delay for peripheral malperfusion syndrome in
acute type a aortic dissection: a long-term analysis. J Thorac Cardiovasc Surg. 2008;135(6):1288–96.

86. Peterss S, Mansour AM, Ross JA, Vaitkeviciute I, Charilaou P, Dumfarth J, Fang H, Ziganshin BA, Rizzo JA,
Adeniran AJ. Changing pathology of the thoracic aorta from acute to chronic dissection: Literature review and
insights. J Am Coll Cardiol. 2016;68(10):1054–65.

87. Mancia G, Parati G. Ambulatory blood pressure monitoring and organ damage. Hypertension. 2000;36(5):894–900.
88. Krüger T, Oikonomou A, Schibilsky D, Lescan M, Bregel K, Vöhringer L, Schneider W, Lausberg H, Blumenstock G,

Bamberg F, et al. Aortic elongation and the risk for dissection: the Tübingen Aortic Pathoanatomy (TAIPAN) project.
Eur J Cardiothorac Surg. 2017;51(6):1119–26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Morphology-based prediction of AD using the aortic centerline
	Dynamic regression analysis of adverse events of AD using FDA

	Results
	Morphology-based prediction of AD using the aortic centerline
	Dynamic regression analysis of adverse events of AD using FDA

	Discussion
	Conclusion
	Abbreviations
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s13040-021-00249-8.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

