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available at the end of the article known as mining frequent subgraphs. Maximal frequent subgraphs are a
representative set of frequent subgraphs; A frequent subgraph is maximal if it does not
have a super-graph that is frequent. In the bioinformatics discipline, methodologies for
mining frequent and/or maximal frequent subgraphs can be used to discover
interesting network motifs that elucidate complex interactions among genes, reflected
through the edges of the frequent subnetworks. Further study of frequent
coexpression subnetworks enhances the discovery of biological modules and
biological signatures for gene expression and disease classification.

Results: We propose a reverse search algorithm, called RASMA, for mining frequent
and maximal frequent subgraphs in a given collection of graphs. A key innovation in
RASMA is a connected subgraph enumerator that uses a reverse-search strategy to
enumerate connected subgraphs of an undirected graph. Using this enumeration
strategy, RASMA obtains all maximal frequent subgraphs very efficiently. To overcome
the computationally prohibitive task of enumerating all frequent subgraphs while
mining for the maximal frequent subgraphs, RASMA employs several pruning
strategies that substantially improve its overall runtime performance. Experimental
results show that on large gene coexpression networks, the proposed algorithm
efficiently mines biologically relevant maximal frequent subgraphs.

Conclusion: Extracting recurrent gene coexpression subnetworks from multiple gene
expression experiments enables the discovery of functional modules and subnetwork
biomarkers. We have proposed a reverse search algorithm for mining maximal frequent
subnetworks. Enrichment analysis of the extracted maximal frequent subnetworks
reveals that subnetworks that are frequent are highly enriched with known biological
ontologies.

Keywords: Biological networks, Subgraph enumeration, Frequent subgraphs, Maximal
subgraphs, Reverse search
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Background

Advances in genome technologies allows for the probing of thousands of genes at the
same time through the use of mRNA sequencing and gene expression microarray. Gene
expression analysis on such microarray data is then used for discovering gene clusters that
have similar expression profiles. Such analysis can also be used for obtaining dysregulated
genes that can be used as markers for solving various disease classification tasks.

However, research has revealed that genes do not work in isolation and often a single
gene does not have an independent effect on a phenotype, rather multiple genes interact
together to control that phenotype. Gene coexpression networks can be used to cap-
ture such correlation among genes [1]. Given a gene expression dataset, a coexpression
network is built in which the nodes represent genes and a link exists between a pair of
genes if the corresponding genes exhibit significant correlation in the microarray analysis
[2, 3]. Traditionally gene expression datasets are analyzed independently. However, func-
tional annotation and biological inference based on a single gene coexpression dataset has
limitations due to experimental noise [2]. To alleviate experimental noise, multiple gene
expression datasets can be analyzed concurrently in a single study. So, recent research has
focused on mining biologically interesting gene coexpression subneworks from multiple
heterogeneous gene expression datasets.

A set of genes that have similar expression profiles in multiple experiments is more
likely to represent a biological module [1, 2]. The integrative analysis of multiple gene
expression datasets enables the discovery of significant interactions involved in complex
biological processes, and has been employed for functional annotation [1], active module
discovery [4], and biomarker discovery [5]. An approach to identify these coexpression
subnetworks is to mine significant subgraphs over multiple gene expression networks.
Careful study of these significant subgraphs can lead to the identification of functional
modules and the discovery of interesting genes interactions that play key roles in complex
diseases [6].

Existing algorithms for mining significant subgraphs from coexpression networks
mainly follow network clustering [1], approximate and frequent subgraph enumeration
approaches [2, 7], or a combination of both. A subgraph that appears in at least a user-
defined threshold of the graphs is called a frequent subgraph. A frequent subgraph that
is not a subgraph of any larger frequent subgraph is called a maximal frequent subgraph.
Mining all frequent and maximal frequent subgraphs is challenging as coexpression net-
works are generally large, sometimes having tens of thousands vertices. On such large
graphs, various algorithmic steps of traditional frequent subgraph mining algorithms
[8-10], such as, candidate generation and pruning, graph and subgraph isomorphism are
not efficient.

A special class of graphs is the graphs with unique-label nodes, e.g., gene coexpression
networks, where no two nodes in the same graph have the same label. For such networks,
the computationally-intensive procedures of subgraph and graph isomorphism are not
required for mining uniquely-labeled graphs. Moreover, the tasks of candidate generation
and pruning is much simpler for uniquely-labeled graphs. The problem of mining fre-
quent subgraphs from graphs with unique vertex labels has received less attention. One
of the early algorithms for mining frequent subgraphs from graphs with unique labels is
MULE (Mining Uniquely Labeled Edgesets) by Koyuturk et. al. [11]. In the experiments
section, we compare our proposed algorithm with MULE.
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In this paper, we propose a novel reverse search algorithm for enumerating all edge-
induced connected subgraphs of a graph. The reverse search utilizes the shortest distance
between edges to check for valid subgraph extensions. Building on this enumeration
approach, we propose an algorithm for mining all frequent and maximal frequent sub-
graphs from a graph database, in which the vertices of each graph has a distinct label.
To efficiently mine all maximal frequent subgraphs, we propose two pruning rules that
eliminate futile search subtrees in the frequent subgraph enumeration tree. These prun-
ing strategies result in significant improvement in the running time of the algorithm. We
demonstrate the effectiveness of the proposed algorithms with the pruning strategies on
gene coexpression graphs, and show that the proposed algorithm is orders-of-magnitude
faster than existing algorithms.

Related work

The backbone of frequent subgraph mining algorithms is the enumeration strategy
employed for enumerating all connected subgraphs as potentially all connected subgraphs
could be frequent. Frequency and feature constraints (e.g., similar node labels) are then
enforced while enumerating the subgraphs. In sparse graphs, the number of connected
subgraphs is much smaller than the number of all subgraphs. Moreover, the number
of subgraphs that satisfy the frequency or feature constraints is much smaller than the
number of connected subgraphs.

Koyuturk et. al. [11] proposed the MULE (Mining Uniquely Labeled Edgesets) algo-
rithm for mining frequent subgraphs of a given collection of graphs, G. A subgraph is
frequent if the number of graphs it appears in, referred to as support, is at least a user-
specified minimum number of graphs. Moreover, an extension to the MULE algorithm
was proposed to mine the closed and maximal frequent subgraphs. A closed frequent sub-
graph is a frequent subgraph that does not have a supergraph with the same supporting
graphs. A maximal frequent subgraph does not have any frequent supergraph. At the core
of the MULE algorithm is a depth-first enumeration approach based on backtracking for
visiting all connected edge-induced subgraphs of a graph. The enumeration approach in
the MULE algorithm visits each subgraph in the enumeration tree only once. A subgraph
is only extended with edges in the candidate edgeset. The set of candidate edges for a sub-
graph is defined based on the set of edges visited and the current edges in the subgraph.
In the MULE algorithm, at each search node in the search space, the set of subgraphs gen-
erated from a given subgraph is not always the set of all supergraphs of a given subgraph
because the missing supergraphs would be visited from other subgraphs.

Because the frequency constraint satisfies the downward closure property, the mini-
mum support constraint is enforced while traversing the subgraph lattice and a futile
search branch is pruned once an infrequent subgraph is encountered. The downward
closure property guarantees that all supergraphs of an infrequent subgraph are infre-
quent. The number of frequent subgraphs in a graph dataset is very large, especially for
small support thresholds. For downstream analysis of these frequent subgraphs, it is often
desired to mine a representative set of these frequent subgraphs. A representative set is
a subset of the frequent subgraphs such that every frequent subgraph not in the repre-
sentative set is similar (high overlap) with at least one subgraph in the representative set.
Mining a set of representative subgraphs is suitable when it is computationally infeasi-
ble to mine all frequent subgraphs. Several approaches have been proposed to mine a
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succinct set of frequent subgraphs, including maximal frequent and close frequent sub-
graphs [7]. To highlight the challenges of mining all frequent subgraphs, we run the
MULE algorithm on a dataset of 35 graphs, used in the experiments (10,000 nodes,
average number of edges 145,114). The MULE algorithm takes hours to generate all fre-
quent subgraphs, depending on the minimum support threshold employed. Moreover, the
MULE algorithm generates millions of frequent subgraphs, while the number of maximal
subgraphs is in the thousands.

For maximal frequent subgraphs, if a frequent subgraph does not have any frequent
supergraph in the enumeration tree, then it is locally maximal frequent. The MULE
algorithm checks if the locally maximal frequent subgraph is a subgraph of an already
mined maximal frequent subgraph to ensure that the locally maximal frequent subgraph
is indeed a maximal frequent subgraph. The set of discovered maximal frequent sub-
graphs that has to be kept in memory can be very large and thus checking if a subgraph
is a subgraph of an already discovered maximal frequent subgraph can be computation-
ally expensive. Another limitation of the MULE algorithm is that it does not have pruning
strategies that eliminate the traversal of search branches that would result in locally maxi-
mal frequent subgraphs that are not globally maximal frequent subgraphs. For the special
case when the graph dataset has a single graph, and minimum support of 1, the MULE
algorithm enumerates all frequent subgraphs of the single graph while in fact there is only
one maximal frequent subgraph that is the graph itself.

Another approach for enumerating all connected subgraphs was proposed in [12]. The
main idea of the approach is that for a given vertex, the set of all connected induced
subgraphs can be partitioned into two groups: the subgraphs that have the vertex, and
the subgraphs that do not have the vertex. The recursive algorithm has an amortized
computation time of O(1) for each vertex-induced subgraph. The algorithm in [12] has
amortized computation time while our proposed algorithm has a linear delay. The algo-
rithm in [12] can be adapted to solve the edge-induced subgraph enumeration problem,
however, it is not clear if the new algorithm will have an amortized computation time of
o).

Reverse Search is a recent search approach for enumeration problems [13]. The basic
idea of reverse search is to arrange all objects to be enumerated in a tree, where each
search node has a unique parent node. A major task of a reverse search algorithm is the
definition of a parent operation on the sets being enumerated that reduces a node in the
tree to its unique parent node [14]. All the objects to be enumerated form an enumeration
tree with tree nodes representing edges and the connections between objects and the cor-
responding parent are represented by edges. A child operation, defined by inverting the
parent operation, determines if an object is a valid child of a given parent object. The enu-
meration tree is constructed by applying a depth-first traversal, starting from a canonical
root and employing the child operation to generate objects. Several reverse search-based
algorithms have been proposed for solving traditional enumeration problems, including
all induced connected subgraphs, all spanning trees of a graph, all topological orderings
of an acyclic graph, all dense subgraphs of a graph, and all maximal independent sets of a
graph [13, 14].

A reverse search algorithm, RS-MST, for enumerating all vertex-induced connected
subgraphs has been introduced in [13] where the parent subgraph of a subgraph G is
obtained by removing the vertex with the minimum degree in the spanning tree of G. A
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subgraph resulting from extending a subgraph G with a vertex v is a valid child of G if
vertex v is a vertex with the minimum degree in the subgraph formed by adding the ver-
tex v to the subgraph G. A similar approach can be applied for mining all edge-induced
subgraphs. For these two reverse search algorithms, finding the MST to check for valid
subgraph extension is a costly operation, considering that some extensions (invalid ones)
will not be pursued in constructing the enumeration tree and will not be reported. The
delay for the RS-MST algorithm is cubic in the number of nodes since we have to extract
the minimum spanning tree for each extension and in the worst case none of the exten-
sions is a valid child. A related problem to the enumeration of all connected induced
subgraphs is the problem of enumerating all connected induced subgraphs of size at most
k. Several algorithms have been proposed for solving this problem [15, 16]. When k equals
the number of nodes in the graph, the enumeration of all induced subgraphs of size at
most k and the all connected induced subgraphs enumeration problem become identical.
A recent article of the algorithms for mining all connected induced subgraphs of size at
most k has recently been published [17]. In [18], we proposed a reverse search algorithm
for enumerating all vertex-induced connected subgraphs of a graph. The parent opera-
tion is based on the shortest distance of the newly added vertex to the first vertex that was
added to the subgraph. The algorithm outperformed existing methods for vertex-induced
subgraph enumeration. Moreover, we employed the enumeration approach to mine all
maximal cohesive subgraphs from vertex-attributed graphs. The proposed method takes
an edge-growth approach to mine all connected frequent edgesets.

Methods

The backbone of the proposed frequent subgraphs mining algorithm is an approach to
enumerate all connected edge-induced subgraphs of a single graph. We first explain our
enumeration approach for all connected edge-induced subgraphs and then extend this
approach to mine all frequent and maximal connected subgraphs.

Preliminaries

Let G = (V, E) be an undirected graph, where V = {v1, - - - , v} denote the set of vertices
and E C (‘2/) is the set of edges. For a vertex v; € V, i is a unique identifier of that vertex,
which is fixed but arbitrarily assigned.

Subgraph A graph Gs = (V, Ey) is a subgraph of G = (V, E), denoted as G; C G, if and
only if Vs € Vand E; C E.

Vertex-induced subgraph For a graph G = (V,E), and a set of vertices U C V, the
vertex-induced subgraph (induced subgraph), denoted as G[ U], is the subgraph G[ U] =
(U, E7) whose vertexset is U and the edgeset Ey; includes all edges whose endpoints are
in U.

Edge-induced subgraph For a graph G = (V,E), and an edgeset S C E, the edge-
induced subgraph, denoted as G[ S], is the subgraph G[S]= (Vs,S) whose edgeset is S
and the vertexset Vs includes all the endpoints of edges in S.
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We call S € E a connected edgeset if its corresponding edge-induced subgraph G[ S]
is connected. A connected edge-induced subgraph can be uniquely identified by its
corresponding connected edgeset and thus the two terms are used interchangeably.

Edge ordering: To maintain an edge ordering, an edge between vertices v; and v; is
denoted as (i,j) where i < j. We define a total order relation on the set of edges in the
graph such that (i,j) < (k,£) if i < k or i equals k andj < €.

The distance between two edges, denoted d(e;, ¢;), in a connected graph is the number
of non-terminal vertices (connect between edges) in a shortest path between the edges.
Using this definition, adjacent edges that share an endpoint have a distance of 1.

Edge neighborhood: For an edge e, the set of all adjacent edges of e is referred to as the
neighborhood of e, and is denoted as N(e). The neighborhood of e is defined as the set of
edges with a distance of 1 to e.

N(e) = {e; € E,d(e;,e) = 1}

Subgraph neighborhood: For an edgeset U C E, the set of neighboring edges in a graph
G = (V,E), denoted as N(U), contains the set of edges not in U that have at least one
neighboring edge in U.

N(U) ={e; € E\ U, Je € Usuchthatd(e;,e) = 1}

Anchor edge: The smallest edge in an edgeset U is denoted anchor(U), i.e., anchor(U) =
ssuch thats < e;,Ve; € U \ s.

Closer to anchor: For a connected edgeset U/ C E with s = anchor(U), and any two
edges e;, ¢; € E\ U, we say that ¢; is ‘closer’ to U than e;, denoted as (e; <y; ¢)), if d(e;, s) <
d(ej,s) or d(e;,s) = d(ej,s) and e; < e;.

Utmost edge: For a connected edgeset U with s = anchor(U), the largest edge in U
with the longest distance to the anchor edge is called the utmost edge and is denoted as
utmost(U). If there is more than one edge whose distances equals the longest distance,
we take the largest edge according to the order relation, i.e., utmost(U) = e such that
eec U\ sandVe; € U\ eeither d(e;,s) < d(e,s) ord(e;,s) = d(e,s) and e; < e.

Enumerating all edge-induced subgraphs
Problem Definition: Given an undirected graph G = (V, E), enumerate all connected
edgesets, CEIS(G).

CEIS(G) = {S | S C E and G[ S] is connected}

In this paper, we propose a reverse search algorithm for enumerating all connected edge
sets of an undirected graph.

Search graph

For a single connected graph, the enumeration of the set of connected edgesets can be
represented by a directed search graph in which nodes represent connected edgesets and
there is a directed edge between two edgesets, (X,Y) if Y = X U {e} and the deletion of e
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from Y keeps X connected. In the search graph, a search node (say, Y) can have multiple
incoming edges as multiple connected edgesets can lead to the same connected edgeset.
A naive approach to traverse the entire set of all connected edgesets is to grow an edgeset
by extending it with one of its neighbor edges and checking in a global list whether the
edgeset has been enumerated before to avoid duplicate listings. Given the combinatorial
nature of connected edgesets, this approach is inefficient as it enumerates each edgeset
many times, and the number of distinct edgesets grows exponentially with the size of the
graph.

Reverse search

The algorithm builds and traverses the connected edgesets search tree wherein nodes in
the tree correspond to connected edgesets and arcs correspond to the parent-children
relations between these edgesets. The arcs in the search tree are defined by a neighbor-
hood function that defines a set of search nodes that can be generated from a search node;
this set is referred to as the valid children of a search node. The outgoing nodes of a search
node constitute the valid search nodes that can be obtained from the search node. Each
edgeset appears only once in the search tree, and there is only one incoming link to each
edgeset from its unique parent edgeset. We enumerate the set of connected edgesets by
depth-first traversal of the search tree. In this section, we define the parent operation and
a data structure that allows for efficient parent/child operations.

Parent child relationship

If a search node Y corresponding to a connected edgeset can be obtained from a unique
search node (say X), then X is called the parent node and Y is called the child node. The
edgeset X can be obtained by deleting a specific edge from the edgeset Y.

Lemma 1 Let U be a connected edgeset with s = anchor(U) and e = utmost(U), then
G[ U — e] is also connected.

Proof We will prove this claim by contradiction. Say, for a connected edgeset U, e is an
edge with the longest shortest distance from s and for contradiction, assume that deleting
e results in a disconnected graph. This means that there exists at least an edge ¢’ such
that all shortest paths between s and € go through e. Let p,;, denote the shortest path
between two edges a and b and w(p,;,) denote the length of the path. Moreover, let p,y =
(s,--+,e---,€) beashortest path from s to ¢’ and w(p,y) denote the length of the path.
So, the shortest distance between s and €/, w(pse) + W), is greater than the shortest
distance between s and e, i.e., w(ps) > w(pse). This contradicts our assumption that e is
an edge with the longest shortest path distance from s in U. Thus, G[ U — €] is connected.

O

Valid children

Building on Lemma 1, we can expand a node U in the search tree to construct one of its
child nodes, U*. For a connected edgeset U with s = anchor(U), e = utmost(U) and a
neighboring edge ¢’ € N(U) such that s < €, the edgeset U* = U U {¢'} is a valid child of
U if and only if the following condition holds:

1 The distance from s to € is greater than the distance from s to e, or
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2  Both ¢ and e have the same distance to s, bute < €.

The definition of valid children ensures that the newly added edge to the child node
has the longest distance from the anchor, and if multiple edges have the same longest
distance to the anchor, the newly added edge is the largest. The proposed reverse search
parent-child relation is the backbone of the enumeration tree neighborhood function,
N : CEIS(G) > 2¢F5(0) The parent-child relation guarantees that a search node only
appears once in the range of the neighborhood function. We build a directed search graph
whose nodes correspond to connected edgesets and there is a directed edge from node X
to Y if edgeset Y is a child of X. For a child Y, let X = P(Y’) denote its parent. The children
of a connected edgeset X € CEIS(G) in the search graph is defined as follows:

NX) ={Y € CEIS(G) | X = P(Y)}

If U and U U {e'} are edgesets corresponding to a parent and a child node, respectively,
we call ¢ a valid candidate of U, otherwise, we call it an invalid candidate of U. For an
edgeset U, the set of neighboring edges, N (U), constitute the candidate edges and can be
partitioned into valid and invalid candidates. Figure 1a shows a sample graph, and Fig. 1b
shows the enumeration tree of the set of all connected edgesets of this graph. Edges are
uniquely labeled starting from 1. The edges of an edgeset are written inside the oval shape
and the set of candidate edges are written adjacent to the oval shape. Figure 1b shows that
edgeset U = {1, 3} has {2, 4, 5} as the candidate edges; anchor(U) = 1 and utmost(U) = 3.
Edge 2 is not a valid candidate because its distance to 1 is the same as the distance of the
utmost edge 3 to edge 1 but 2 is less than 3 in the order of the edges, thus the branch
corresponding to {1, 3, 2} will not be explored. Edge 4 has the same distance as edge 3 to
edge 1, but since 4 is greater than 3, then edge 4 is a valid candidate. Edge 5 distance to
edge 1 is larger than the distance of the utmost edge and thus it is a valid candidate. For
the edgeset {2, 5} with a candidate set {1, 3, 4}, both edges 1 and 3 are not valid candidates;
edge 1 is less than the anchor 2 and edge 3 has the same distance as edge 5 to edge 2 but
edge 3 is less than 5; edge 4 is a valid candidate because its distance to edge 2 is larger
than the distance of the utmost edge 5 to edge 2. For single-edge search nodes in level 1,
if the candidate edge is larger than the anchor edge, then it is an invalid edge.

Enumerating all subgraphs of a single graph

Algorithm 1 shows the pseudo-code for our algorithm. For each edge in the graph, we call
EnumerateCEIS, a recursive procedure. The procedure takes a connected edgeset E, the
set of candidate edges C and the utmost edge of the edgeset utmost(E;). For each edge ¢j in
the candidate set (line 6), the procedure checks if the edge is a valid candidate (line 7) for
extending E;. If so, it updates the candidate set and recursively calls the EnumerateCEIS
procedure (lines 8-9). The candidate set can be updated by using the current candidate
set and the neighbors of the last added edge N(e;). To update the candidate set, we add
the neighbors of the current edge e; that are not already in the candidate set C or in the
current edgeset E (line 10). The isValidExtension procedure (line 14) checks if the edge e;
is a valid candidate for the edgeset in E; following the rules in the valid children section.

Theorem 1 Given an undirected graph G = (V,E), Algorithm 1 enumerates all
connected edge-induced subgraphs without redundant enumeration.
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Fig. 1 Enumeration tree for all connected edgesets

Proof Correctness means that each initial recursive call in Algorithm 1 (line 2) with s as
the anchor edge will generate all the edge-induced subgraphs whose anchor is s under the
enumeration tree rooted at s. First, all single edge subgraphs will be enumerated because
we output the single edge the first time we call the recursive procedure (lines 2 and 5).
We will prove that all connected edge-induced subgraphs with anchor s with at least two
edges will be enumerated. For any connected edgeset I € E, k = |U| > 2and s =
anchor(U), we show this construction approach to obtain G[ U]. Let Us denote the sorted
edges in U, U; = {e1,e2,---,ex}, such that ey = sand forall 1 < i < k — 1 either
d(e;,s) < d(ej+1,s) or d(e;, s) equals d(ej+1,s) and e; < e;y1. There is a unique sequence
of recursive calls to generate this G[ U], starting the initial call with E; = {e;} calling the
procedure with E; = {e1, ez} and ending the procedure with E; = {ej, e2, - - - , ex—1} calling
the last call with E; = {ej, e, - ,ex—1,ex}. Each recursive call in this sequence will be
executed because for all 2 < i < k, the connected edgeset E} = {ey, - - - , ¢;} is a valid child
of E; = {e1,- -+ ,ei—1}. Note the last edge added in each call satisfies the valid child rules.
This proves the completeness of the algorithm.

Next we show that the enumeration approach does not have redundant subgraph gen-
eration, i.e., each connected edge-induced subgraph is generated once. For a connected
edge-induced subgraph, G[ U], with k = |U| and s = anchor(U), let Uy be the set of
sorted edges in U with respect tos, Us = {s,e2,--- ,-- -, ex}. There is a unique path from
the root s to the subgraph G[ U]. The subgraph is obtained by starting from the subgraph
G[ {s}] and adding one edge at a time in the same order in U. O

Complexity analysis

Since the number of reported subgraphs can be exponential with respect to the number
of edges of the graph, we analyze the time the algorithm takes to report the first subgraph
and a subgraph after it has generated the previous subgraph [13]. This duration is defined
as Delay. An enumeration algorithm is called a polynomial delay algorithm if its delay is
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polynomial in the input size [19]. The proposed connected edge-induced subgraph enu-
meration approach is a linear delay and this is an improvement of the current best cubic
delay.

Theorem 2 Algorithm 1 is a linear delay and a linear space algorithm with respect to
the number of edges of the graph.

Proof We use an array-based implementation in which we maintain the set of edges of
an edgeset, the candidate edges and the distance of the candidate edges to the anchor
edge. Using this data structure, the anchor edge, utmost edges, and the distance of an edge
to the anchor edge can be accessed in constant time. The algorithm checks if an edge is a
valid candidate of the edgeset in a constant time O(1) (Algorithm 1 line 7). In the worst
case scenario when all the candidate edges are invalid, the algorithm takes O(|E|) when
the candidate set has all the edges. To prove the linear delay, we employ the alternative
output method proposed in [19] to reduce the delay of the algorithm. The algorithm is
an internal output algorithm since it outputs a solution for each recursive call. Following
the alternative output method, the algorithm outputs a subgraph before starting to call

Algorithm 1 Mining All Connected Edge-Induced Subgraphs
Input: G = (V, E): an undirected graph

1: fore; € Edo
2: ENUMERATECEIS({e;}, Neighbors({e;}), e;)
3: end for

4: function ENUMERATECEIS(E, C, e/)

5: If depth is odd, output E
6: fore; € Cdo
7: if ISVALIDEXTENSION(E;, ¢;, e¢) then
8: C" = Neighbors(E U {e;})
9: ENUMERATECEIS(E; U {ej}, C', ¢))
10: end if
11: end for

12 If depth is even, output Es
13: end function

14: function ISVALIDEXTENSION(E, ej, X)

15: s = anchor(E;)

16: ife; < sthen

17: return False

18: end if

19: if distance(ej, s) > distance(x, s) then

20: return True

21: end if

22: return distance(ej, s) = distance(x, s) and e; > x

23: end function
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the EnumerateCEIS recursive call if the depth of the recursive call is odd (Algorithm 1
line 5) and outputs the subgraph after the recursive calls for even depth (Algorithm 1
line 12). Therefore, each connected edgeset can be enumerated with linear delay O(|E]).
For generating the first subgraph, the algorithm takes constant time since every initial
recursive call (Algorithm 1 line 2) outputs a subgraph with single edge. If the graph has
multiple connected components, we can run the algorithm for each component and the
delay will be O(|E,|), where |E_| is the size of the largest connected component. O

An algorithm is output polynomial, if it outputs all the elements to be enumerated in
time polynomial to the number of elements. Since the proposed algorithm takes linear
time for each connected edgeset, it is output (or total) polynomial in the number of con-
nected edgesets; output polynomial follows from the polynomial delay for each output.
The algorithm explores the search tree in a depth first manner, which ensures that the
space used is bounded by the depth of the search tree, which is at most |E|. We use three
arrays, each of size |E| to keep track of which edges are in the connected edgeset, their
neighbors, and their distances to the anchor edge. So, the depth first search of the enu-
meration tree can be done with linear space in the depth of the enumeration tree which
is O(|E)).

Mining frequent subgraphs

In many applications, we have a dataset of graphs and the goal is to extract significant
subgraphs. In the frequent subgraph mining problem, the goal is to mine subgraphs that
appear in at least a user-defined minimum threshold of the graphs. In this work, we are
only concerned with connected frequent subgraphs.

Graph Dataset Let G = {G, G, -, Gy} denote a set of n undirected graphs. For an
undirected graph G; = (V,E;), i €[[1---n]], V = {v1,v2,-- , vk} denote the set of ver-
tices and E; C (‘2/) denote the set of edges of the corresponding graph. All the graphs are
defined over the same set of vertices;

In this work, we represent the dataset G of n graphs as an edge-attributed graph,
G = (V,E,f), where V is the set of vertices and E is the set of all the edges in the graph
dataset and f is an edge attribute function. The edge attribute function f maps each edge
to the set of graphs in which it appears. The set of all edges is the union of the sets of
edges in each graph. We label the edges in the edge-attributed graph with unique iden-
tifiers {1,2,-- -, |E|}. Figure 2 shows a toy graph dataset of four graphs in (a) and the
corresponding edge-attributed graph in (b).

Supporting graphs Given a set of graphs G, the set of supporting graphs of an edge-
induced subgraph, G; is defined as follow: sup(G, Gs) = {G;|Gs C G; and G; € G}. When
the graph dataset is clear from the context, we refer to the supporting graphs as sup(Gj).
The cardinality of the supporting graphs is referred to as the support of the subgraph, i.e.,
lsup(Gy)|.

Frequent subgraph Given a graph dataset G and user-specified support threshold S,i,,
a graph G; is called frequent if the subgraph’s support is equals to or greater than the
support threshold, i.e., G; is a frequent subgraph if |sup(G, Gs)| > Syin-
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Fig. 2 Mining Frequent Subgraphs: (a) Graph dataset (b) A summary graph representation and a table
representing the edge attribute function f for mapping edges to the graphs in which they appear (c)
Frequent and maximal frequent subgraphs with minimum support 3

Since an edge-induced subgraph is uniquely identified by the edgeset, we use frequent
subgraphs and frequent edgesets interchangeably.

Problem definition Given a graph dataset G and a support threshold S,;,, the problem
of mining the set of frequent subgraph is to enumerate the set:

]: = {Gsl» Gs2» G53:' o 1GS‘]-“}

such that every G, € F is a frequent connected subgraph, i.e., [sup(G, G;)| > Spin. For
the graph dataset in Fig. 2a, the set of frequent subgraph for minimum support of 3 is
shown in Fig. 2c. Given a minimum support threshold S,,;,, the anti-monotone support
constraint guarantees that if a subgraph G; is frequent, then each subgraph G* of G; is
also frequent, i.e., [sup(Gs)| > Spin = for all G* C Gs, the subgraph is frequent
lsup(G*)| = Smin-

Our proposed algorithm for mining all frequent subgraphs employs the reverse search
enumeration approach in Algorithm 1 to enumerate all connected subgraphs and enforc-
ing the supporting constraint. The anti-monotone property of the support of a subgraph is
employed in the mining algorithm to prune search branches when an infrequent subgraph
is encountered. If an infrequent subgraph is encountered, then the recursion procedure
EnumerateFCIS is not called and the search subtree rooted at this infrequent subgraph
is not enumerated. The enumeration tree for the set of frequent subgraphs is shown in
Fig. 3b.

The algorithm for mining frequent subgraphs is shown in Algorithm 2. In line 1, infre-
quent edges are pruned, and the recursive EnumerateFCIS procedure is called for each
frequent edge (Line 3). The recursive procedure follows the same steps as the enumer-
ation approach in Algorithm 1, except for the if statement in line 9 to ensure that only
search branches rooted at frequent subgraphs are explored. The recursive procedure is
called only from frequent children (line 11). Therefore, only frequent subgraphs will be
added to the set of frequent subgraphs in line 6.
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Algorithm 2 Mining All Connected Frequent Subgraphs

Input: a graph dataset, G , and a minimum support threshold, S,
Output: The set F of all frequent subgraphs

1. Ly = {e| e € E and |sup({e})| = Sin)
2. fore € L1 do
3: ENUMERATEFCIS({e}, Neighbors({e}), e)

4: end for

5. function ENUMERATEFCIS(E, C, e/)
6: F <« F UES

7: fore € Cdo

8: if ISVALIDEXTENSION(E;, e, e¢) then

9: if |sup(Es U {e})| = Syin then

10: C’ = Neighbors(Es U {e})

11: ENUMERATEFCIS(Es U {e}, C', e)
12: end if

13: end if

14 end for

15: end function

16: return F

Mining maximal frequent subgraphs

Because of the downward closure property of frequent subgraphs where all the subgraphs
of a frequent subgraph are frequent, there is high overlap between frequent subgraphs.
A representative set of all frequent subgraphs is a concise summarization of the frequent
subgraphs in the dataset. We thus propose an algorithm for mining maximal frequent
subgraphs. Recall that a maximal frequent subgraph is a frequent subgraph that does not
have any frequent supergraph. i.e., G[ E;] is maximal frequent if there is no subgraph
G[E*] D GIE], such that |sup(G[E*])| > Smin. Though not efficient, all frequent sub-
graphs can be extracted from the set of maximal frequent subgraphs since all subgraphs
of a maximal frequent subgraph are frequent. However, the exact frequency (support) of
the frequent subgraphs can not be obtained from the maximal frequent subgraphs. Due
to the combinatorial nature of frequent subgraphs, the set of maximal frequent subgraphs
is much smaller than the set of all frequent subgraphs.

Problem definition Given a graph dataset G and a support threshold S,;;;,, the problem
of mining the set of maximal frequent subgraph is to enumerate the set:

M = {Gsl) Gsz: GS3; cee 1GS‘M|}

such that every G;; € M is a maximal frequent connected subgraph.
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Fig. 3 Mining Frequent and Maximal frequent Subgraphs: (@) A graph dataset of four graphs in the
edge-attributed graph format (b) Enumeration tree for frequent subgraph with minimum support set to 3;
maximal frequent subgraphs are circled with dotted line; all the subtrees with the light gray background are
pruned when mining for only maximal frequent subgraphs in the proposed algorithm

For the graph dataset of four graphs shown in Fig. 2a, and minimum support S, = 3,
there are two maximal frequent subgraphs and they are drawn inside dotted circles in
Fig. 2c. These are the same subgraphs inside dotted circles in Fig. 3c.

In the enumeration tree for mining frequent subgraphs, every leaf search node is poten-
tially a maximal frequent subgraph. The reason for a leaf not always being a maximal
frequent subgraph is that there could be an invalid subgraph of that leaf that is frequent
and it was not explored because it is not a valid extension at this stage of the enumeration
tree. An algorithm for mining all maximal frequent subgraphs is to enumerate the fre-
quent subgraphs enumeration tree and to report subgraphs that do not have any frequent
valid or invalid extension. This algorithm is a straightforward extension of Algorithm 2.
To decide locally if a subgraph is a maximal frequent subgraph, we need to switch lines 8
and 9 in Algorithm 2. We also need a flag before line 7 that is set to true. If the extended
subgraph is frequent, |sup(E; U {e})| > Suin, the flag is set to false, indicating that the
subgraph is not maximal. After the for loop, we add the subgraph to the output list if the
flag is still true. Note that this approach does not need a global list of the already mined
maximal frequent subgraphs such as the one employed in the MULE algorithm. Follow-
ing this mining approach, the enumeration tree for maximal frequent subgraphs would
look like the tree in Fig. 3b. We will need to enumerate all 20 frequent subgraphs to get
the two maximal subgraphs. Enumerating the search tree of frequent subgraphs is com-
putationally expensive, especially for low minimum support thresholds when the search
tree becomes very large. A more efficient approach would be to mine the set of all maxi-
mal frequent subgraphs without enumerating the whole frequent subgraphs enumeration
tree. In the following subsections, we develop pruning strategies that eliminate the need to
traverse search branches without sacrificing the correctness of the results. In the experi-
ments section, we demonstrate how the proposed pruning strategies result in a significant

performance improvement.
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Consumed by a sibling

For a graph dataset §, a connected frequent edgeset S C E, let e; and ej be two valid can-
didate edges of G[S] such that e; is closer to anchor(S) than e; and these two extensions
generate two frequent subgraphs, G[ S U {e;}] and G[ S U {e;}] and the set of supporting
graphs of G[ S U {e;}] is a subset of the supporting graphs of G[ S U {e;}], sup(S U {e;}) C
sup(S U {e;}). Under this scenario, these two subgraphs are not maximal frequent sub-
graphs because any maximal frequent subgraph that is a supergraph of G[ S U {e;}] will
also be a supergraph of G[ SU {e;}]. This conclusion is reached by observing that any max-
imal subgraph that is a supergraph of G[ SU{e;}] can be extended with e; without violating
the minimum support threshold because we have the graphs that contain G[ S U {e;}] also
contain G[ S U {e;}].

We will show that G[ S U {e;, ¢;}] is also a frequent subgraph that can be extended from
G[S U {e;}]. Note that since sup(G[S U {e;j}]) € sup(G[S U {e;}]), we get sup(G[S U
{ei,ej}]) = sup(G[ S U {e;}] ). Moreover, the maximal frequent subgraphs that are descen-
dants of G[ S] will be explored through the G[ S U {e;}] branch. In this case, we can safely
prune the search branch rooted at G[ S U {¢;}].

Pruning rule 1: Consumed by sibling

For a connected frequent subgraph G[ S] with two valid candidates e; <g ¢; resulting in
two frequent children subgraphs G[S U {e;}] and G[S U {e;}] with sup(G[S U {¢;}]) €
sup(G[ S U {e;}]), the search branch rooted at G[ S U {e;}] can be safely pruned.

Proof At the search node in the enumeration tree representing G[ S], consider the set
of edges X = E \ {S U {e;, ¢;}} that can be reached from S and assume there is a maximal
subgraph in the branch rooted at G := G[ SU{e;}] which we plan to prune. Such a maximal
frequent subgraph is denoted as G' = G[S U {e;} U Y], for Y € X. However, this G’
subgraph can be extended with e; and still yield a frequent subgraph. The subgraph G[ SU
{e/} U Y U {e;}] is a frequent subgraph since e; is connected to S and can be added to
G[ SU{e;j}UY] without violating the minimum support threshold since sup(G[ SU{e;}]) <
sup(G[ S U {e;}]). The existence of a frequent subgraph G[ S U {e;} U Y U {¢;}] contradicts
our assumption that G[ S U {e;} U Y] is a maximal frequent subgraph. This proves that
G[S U {ej} U Y] is not a maximal frequent subgraph.

Moreover, G[S U {ej} U Y U {e;}] is not a descendant of G[S U {e;}] since e; is not a
valid extension to any descendant of G[S U {e;}]. This is because once ¢; is added to the
edge set S, edge e; can not be added since e¢; is closer to anchor(S) than ¢; and according
to the valid children definition, e; will never be a valid extension of any descendant of
G[ SU{e;}]. Since all the subgraphs in the search tree rooted at G[ SU{e;}] can be expressed
as G[SU{g} U Y], for Y C E\ {SUe; U g}, this proves that none of the descendants of
G[ S U {¢j}] will be a maximal frequent subgraph. Therefore, it is safe to prune the search
branch rooted at G[ S U {¢;}] without losing any maximal frequent subgraphs. O

For the graph dataset in Fig. 3, and minimum support S, = 3, consider the edgeset
{(4,B)} and its two neighboring edges (A4, C) and (B, C). The supporting graphs of the
subgraph induced by the edgeset {(A4, B), (A, C)} are graphs {1, 2, 3} which is the same as
the supporting graphs for the subgraph induced by the edgeset {(A4, B), (B, C)}. Moreover,
since edge (A, C) is closer than (B, C) to the anchor edge (A4, B), then by applying Pruning
Rule 1, the search branch at the subgraph induced by {(4, B), (B, C)} can be safely pruned.
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Algorithm 3 RASMA: Maximal Frequent SubgRAphS Mining Algorithm
Input: a graph dataset, G , and a minimum support threshold, S,

Output: M, all maximal frequent connected subgraphs (edgesets)

1: L1 ={e|e€E and |sup(e)| > Syin}

2 M={}

3: fore € L1 do

4 if e is not covered by a smaller neighboring edge then
5: MINEMAXIMALSUBGRAPHS({e}, N({e}), e)

6: end if

7. end for

8: function MINEMAXIMALSUBGRAPHS(E;, C, ef)

9: maximal < true
10: fore; € Cdo
11: E; «— E;Ue;
12: if [sup(E,)| > Syin then
13: maximal < false
14 if ISVALIDEXTENSION(E;, ¢;, e¢) then
15: if e; covered by a smaller edge in C or covered by the parent then
16: Continue
17: end if
18: C' = Neighbors(Es U {e;})
19: MINEMAXIMALSUBGRAP]—[S(E;, C,ep)
20: end if
21: end if
22: end for
23: if maximal then
24: M= MUE;
25: end if

26: end function

27: return M

Similarly, the search branch at the subgraph induced by {(A4, B), (B, D)} is pruned because
it is subsumed by the search branch at {(4, B), (4, D)}.
Pruning rule 2: Identical as parent
For a graph dataset G, a connected frequent edgeset S C E with two valid candidate edges
e; <s ¢ that result in two frequent subgraphs such that the set of supporting graphs of
G[S U {e;}] is identical to the that of G[S]. Under this scenario, the entire search branch
rooted at G[ S U {¢;}] can be safely pruned.

For a given search node representing G[ S], we sort all valid candidates based on their
distances to the anchor edge of S, if we encounter an extension e; such that the new

Page 16 of 23
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Table 1 Running times (in seconds) of the MULE and RASMA algorithms

sup Frequent subgraphs Maximal subgraphs

Smin |F] MULE Algorithm 2 |IM]| MULE RASMA
20 214,119 0.93 0.46 4,701 525 0.34
19 599,798 1.02 0.65 6,463 12.32 0.35
18 1,776,157 2.01 1.60 9,038 50.75 0.45
17 9,040,719 7.79 7.50 12,879 241.19 0.59
16 2,968,677,772 2880 1718 18,978 1877.95 0.92
15 - - - 28,578 - 3.50

extended subgraph appears in the same set of graphs as the parent subgraph, then all the
remaining valid candidates in the sorted list of the parent can be safely skipped.

Proof Assume that there is an edge ¢; that is a valid extension of G[S] and e; is closer
to anchor(S) than e;. The supporting graphs of G[ S U {e;}] is a subset of the supporting
graphs of G[S] (sup(G[S U {¢;}]) € sup(G[S])) because the set of the supporting graphs
of a subgraph is a subset of the set of the supporting graph of the parent subgraph. This
pruning strategy is an extension of Pruning Rule 1. Since we have sup(G[ S U {e;}] ) equals
sup(G[S]) and therefore sup(G[S U {e;}]) C sup(G[S U {e;}] ), then by Pruning Rule 1,
the search branch rooted at e; can be safely pruned. O

For the example in Fig. 3, the supporting graphs of the subgraph induced by the edge-
set {(A4,B), (A4, C), (B, C)} are the same as the supporting graphs of the parent subgraph
{(A, B), (A4, C)}, therefore all the remaining search branches for the parent graph can be
safely pruned. This is the case for the subgraph induced by edgeset {(4, B), (4, C), (C, D)}.

Pruning rule 3: Level one pruning Pruning for level one (single edge) is similar to prun-
ing at any search node in the search tree. This Pruning Rule is the expansion of Pruning
Rule 1 for the case of S = #J. For any two edges e; and e; sharing a common endpoint and
e; is smaller than e;, if the supporting graph of ¢; is a subset of the supprting graphs of e;
(sup({ej}) C sup({e;})), then the search tree rooted at e; can be safely pruned. The proof
follows the same steps as in Pruning Rule 1. For any connected edgeset S C E \ {e;, ¢j},
the subgraph G[ {e;} U S] is not a maximal frequent subgraph since G[ {e;} U S U {¢;}] is a
frequent subgraph since e; is connected to e; and appears in all the graphs that e; appears
in. Moreover, G[ {¢;} U S U {e;}] is not a descendant of G[ {e;}] since ¢; < ¢;.

In Fig. 3, the search subtree rooted at (4, C) is pruned because the set of supporting
graphs of (4, B) is a superset of the supporting graphs of (4, C). Similarly the three search
subtrees rooted at (A4, D), (B, C), and (B, D) are all safely pruned by this rule.

Algorithm

Algorithm 3 shows the proposed RASMA algorithm. The algorithm follows the enumera-
tion approach for mining frequent subgraphs and employs the pruning strategies to avoid
visiting subtree branches that will not result in maximal frequent subgraphs. In line 1,
frequent edges are extracted and then in lines 3-7, a search subtree will be traversed
from each frequent edge. Frequent edges that are covered by a neighboring smaller edge
will not be explored by virtue of Pruning Rule 3 (line 4). In the MineMaximalSubgraph
procuedure, for each edge in the candidate edges C, if the extension would generate a
frequent subgraph, then we set the maximal flag to false indicating that the current
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Table 2 Topological properties and running times for varying support thresholds

Smin IM] | AMF| 1E| v Density Seconds
15 28,578 17,855 14.78 15.36 0.2 3.50

14 43,773 30,094 16.33 16.82 0.19 4.20

13 67,978 50,227 18.17 18.53 0.17 7.65

12 105,950 82,831 20.22 2042 0.16 15.75

11 164,613 134,245 2242 2241 0.15 37.53

10 252,345 211,678 24.75 2447 0.15 92.38

9 378,437 322,381 271 2645 0.15 241.65

8 549,709 470,572 29.03 2793 0.16 669.25

7 774,221 659,303 29.36 27.82 0.18 1958.77

subgraph is not a maximal frequent subgraph (lines 12-13). Next, for each valid candi-
date we check if this extension is covered by a previous extension (Pruning Rules 1 and 2:
line 15) and we recursively call the procedure only for valid children that are not covered
(lines 14-19). We add the current subgraph to the maximal frequent subgraphs set if the
maximal flag is still true, line 24.

Results

We tested the performance of RASMA on mining frequent and maximal frequent
subgraphs from gene coexpression networks. Moreover, for investigating the impact
of the pruning rules, we compared the running time of the algorithm with and with-
out the pruning rules. All experiments were performed on a machine with Intel Xeon
2.40GHz processor with 16 Gbytes main memory, running the Linux operating system.
The algorithms were implemented in C++ and the MULE implementation was in C.

Performance on tissue gene expression

We tested the proposed algorithm on 35 tissue gene coexpression networks constructed
by the Gene Genetic Network Analysis Tool [20]. The coexpression networks were
inferred from Genotype-Tissue Expression (GTEx) data'. Each coexpression network is
constructed from the gene expression of non-diseased tissue samples. On average there
are 145,114 coexpression links (edges) in each network among 9,998 genes. In total, there
are 1,548,622 unique coexpression edges that appear in at least one coexpression net-
work. Among these edge, there are 55,558 edges that appear in at least 10 networks, 4,127
appear in at least 20 networks, and 554 appear in at least 30 networks. On average each
edge appears in 3.28 networks.

Table 1 shows how the number of frequent and maximal frequent subgraphs (| F| and
|M]) and the running times for the MULE and RASMA for mining the frequent and
maximal subgraphs vary for varying minimum support thresholds. For mining the max-
imal subgraphs, the proposed algorithm is orders of magnitude faster than the MULE
algorithm for low support thresholds. The MULE algorithm is much slower for min-
ing maximal frequent subgraphs since it has to enumerate the same frequent subgraphs
enumeration tree. Moreover, for each potential maximal subgraph the MULE algorithm
checks if it has a supergraph in a global list. For mining all the frequent subgraphs, both
algorithms have similar running times and for a support threshold of 15 both did not
finish the mining task in two days.

Uhttps://www.gtexportal.org/
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Table 3 Impact of the pruning strategies on the number of search nodes explored

sup maximal Without Pruning RASMA

Srin M| #Nodes Seconds #Nodes Seconds
20 4,701 214,119 0.35 13,869 0.34

19 6,463 599,798 254 20,529 0.35

18 9,038 1,776,157 8.18 31,442 0.45

17 12,879 9,040,719 51.46 49,880 0.59

16 18,978 2,968,677,772 21,031.44 82,607 0.92

Table 2 shows the topological properties of the reported subgraphs and running times
of RASMA for lower support thresholds. For calculating the topological properties of the
maximal frequent subgraphs, only subgraphs with at least three edges (denoted | M*|) are
considered since a large percentage of the maximal frequent subgraphs have one or two
edges only. The number of maximal frequent subgraphs with at least three edges (] M*|)
increases for lower support and so do the average numbers of edges (|E|), nodes (| V1), and
density (Density).

Effectiveness of pruning rules

The pruning rules aim at reducing the number of search nodes explored while mining
the maximal frequent subgraphs. The closer to the root the pruning occurs, the more
search nodes are eliminated. To investigate how the proposed pruning rules improve the
performance of the algorithm, we show a comparison with the pruning rules disabled.
Table 3 shows the impact of the pruning rules on the running time and on the number of
frequent subgraphs explored. Although both the frequent subgraphs and maximal sub-
graphs (without pruning) algorithms enumerate the same frequent subgraphs search tree,
it is important to notice that the algorithm without pruning is much slower than mining
all frequent subgraphs. This is true since for a maximal subgraph, all immediate potential
children nodes have to be check for frequency to mark the subgraph as maximal (line 12 in
Algorithm 3), regardless of whether the extension is a valid child. Therefore, the number
of frequency checking is much larger than the number of frequent search nodes explored.
However, the algorithm for frequent subgraphs checks if an extension is frequent only for
the valid children (lines 8 — 9 in Algorithm 2). The algorithm with pruning strategies tra-
verses only a very small fraction (0.000028 for support = 16) of the frequent subgraphs
while maintaining the completeness of the maximal frequent subgraphs.

Analysis of maximal frequent subgraphs

We performed a biological enrichment for the gene sets (nodes) of the maximal frequent
subgraphs. A biological annotation, knowledge, is to said to be enriched in a gene set if a
significant subset of the genes of the gene set are annotated with the given annotation. We
tested the overrepresentation of genes with a specific annotation in a gene set using the
hybergeometric test (with pvalue = 0.01). We used multiple annotation databases from
the Molecular Signatures Database (MSigDB) [21, 22] for assessing the enrichment of the
genes in these reported subgraphs with these annotations.

1 KEGG: Gene sets derived from the KEGG pathway database (186 sets).
2 BP: Gene sets derived from the GO Biological Process Ontology. (7350 sets).
3 MEF: Gene sets derived from the GO Molecular Function Ontology. (1645 sets).
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Table 4 Enrichment analysis of the maximal frequent subgraphs

sup maximal* Topological Properties Enrichment Analysis

Smin [M¥| & Density Exece Egp Ewmr
20 1,701 9.82 0.29 763 915 86.5
19 2,580 10.76 0.26 772 919 87.1
18 4,116 11.68 0.25 77.8 91.8 87.5
17 6,598 12.72 0.23 79.2 91.7 87.7
16 10,716 14.04 0.21 81.0 91.8 88.7

Table 4 shows the percentage of the maximal frequent subgraphs whose genesets are
biologically enriched for each of the three biological signatures. Some subgraphs are
enriched with several signatures and some signatures are enriched in the genes of multiple
subgraphs. Moreover, the reported subgraphs are enriched with a large number of biolog-
ical annotations for each of the databases. Only maximal frequent subgraphs with at least
three edges were considered for the analysis (denoted as |M*| in the table). The enrich-
ment analysis shows that frequent subgraphs are highly enriched with known biological
annotations.

An annotation can be enriched in many reported gene sets. We sorted the annotations
by the number of subgraphs they are enriched in. Table 5 shows the top biological sig-
natures that were enriched the most in the reported genesets of the maximal frequent
subgraphs for S,,;,;, = 20.

Frequent coexpression subnetworks for breast cancer stages

We constructed gene coexpression networks from breast cancer gene expression samples
in the TCGA portal. We downloaded 1,310 RNA-seq samples; 113 of these samples are
Solid Tissue Normal (used as control) and the remaining 1,197 samples are Primary Solid
Tumor. The cancer samples belong to four different stages. For cancer and control samples
for each stage, we extracted the differentially expressed genes (DEGs) using |log(FC)| > 2
and corrected p-value < 0.05 as the cutoffs. We then constructed the coexpression net-
work among the DEGs for each cancer stage. A pair of differentially expressed genes is
considered coexpressed if absolute value of the Pearson correlation coefficient (PCC) is
at least 0.7. Table 6 summarizes the number of samples, DEGs, and coexpression links for

Table 5 Top enriched signatures in maximal subgraphs; Sy, = 20

KEGG Pathways N KEGG Pathways N
RIBOSOME 884 HUNTINGTONS_DISEASE 274
PARKINSONS_DISEASE 261 OXIDATIVE_PHOSPHORYLATION 257
ALZHEIMERS_DISEASE 251 CARDIAC_MUSCLE_CONTRACTION 158
VIRAL_MYOCARDITIS 21 TIGHT_JUNCTION 18
AUTOIMMUNE_THYROID_DISEASE 17 SPLICEOSOME 16
GO Biological Process N GO Molecular Function N
VIRAL_GENE_EXPRESSION 888 RRNA_BINDING 511
RNA_CATABOLIC_PROCESS 886 ELECTRON_TRANSFER_ACTIVITY 223
TRANSLATIONAL_INITIATION 884 MRNA_BINDING 205
PROTEIN_TARGETING 884 NADH_DEHYDROGENASE_ACTIVITY 133
CYTOPLASMIC_TRANSLATION 808 ANTIGEN_BINDING 113
RIBOSOME_BIOGENESIS 777 5S_RRNA_BINDING 69

RIBOSOME_ASSEMBLY 722 CADHERIN_BINDING 39
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Table 6 Cancer stages

Stage samples DEGs coexpression links
I 203 1,656 25,368
Il 691 1,694 19,230
Il 281 1,700 21,697
% 22 1,903 68,905

each cancer stage. There are 1,176 common DEGs genes that are dysregulated in all the
stages and 2,394 unique DEGs in all the stages. Moreover, there are 9,677 common links
that appear in all the four coexpression networks, and 81,204 unique links in all the net-
works. We mined the maximal frequent subnetworks for support thresholds of 2, 3 and 4.
Table 7 show the topological and biological enrichment analysis of the reported subnet-
works. For the biological enrichment analysis, we used the following biological collections
from the Molecular Signatures Database.

KEGG: Gene sets derived from the KEGG pathway database (186 sets).
CGN: computational cancer gene neighborhoods (427 sets).

CM: computational cancer modules collected from a variety of resources (431 sets).

Bow N o=

OS: Oncogenic signatures of cellular pathways which are often dis-regulated in
cancer (189 sets).

Table 8 shows the top enriched oncogenic signatures in the gene sets of the maximal
frequent subnetworks for varying support thresholds. Note that the number of enriched
signatures can be different than the number of enriched subnetworks as a gene set in a
subnetwork can be enriched with several signatures. The table also shows the number of
subnetworks in which each signature is enriched. For S,,;;; = 2, the most enriched signa-
ture is RB_P130_DN.V1_UP. This oncogenic signature represents up-regulated genes in
primary keratinocytes from RB1 and RBL2 [23]. The RB1 gene has a role in proliferation
and apoptosis and the alteration of RB1 underlies both cancer development and resistance
to therapy [24]. Mutational loss of RB1 has been linked to the development of breast can-
cer [25]. There are three oncogenic signatures that are highly enriched in the gene sets of
the subnetworks for all the support thresholds.

1 E2F1_UP.V1_UP: Genes up-regulated in mouse fibroblasts over-expressing E2F1
[26].

2 EGFR_UP.V1_DN: Genes down-regulated in MCF-7 cells (breast cancer) positive
for ESR1 and engineered to express ligand-activatable EGFR [27].

3 ERBB2_UP.V1_DN: Genes down-regulated in MCEF-7 cells (breast cancer) positive
for ESR1 and engineered to express ligand-activatable ERBB2 [27].

Table 7 Topological and enrichment analysis of the maximal frequent subgraphs

sup Maximal size> 3 Topological Properties Enrichment Analysis

Sin M | M 1€l gl Density  Exeoo Econ Ecwm Eos
2 143 68 1334.62 48.85 0.5 0.53 0.29 05 037
3 69 31 1503.06 57.97 0.51 0.65 0.29 048 0.29

4 32 10 965.5 414 0.58 0.5 0.2 04 0.3
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Table 8 Top enriched oncogenic signatures

Smin Signatures # subnetworks

2 RB_P130_DN.V1_UP
CORDENONSI_YAP_CONSERVED_SIGNATURE
E2F1_UPV1_UP
EGFR_UPV1_DN
ERBB2_UP.V1_DN

3 E2F1_UPV1_UP
EGFR_UPV1_DN
ERBB2_UP.V1_DN
GCNP_SHH_UP_EARLY.V1_UP

4 E2F1_UPV1_UP 1
EGFR_UP.V1_DN 1
ERBB2_UP.V1_DN 1
GCNP_SHH_UP_EARLY.V1_UP 1

A A M DO OO NN

Conclusion

Frequent coexpression subnetworks have been shown to be effective in functional anno-
tation and subnetwork biomarker discovery. We proposed a reverse search algorithm for
mining maximal frequent subgraphs. We first proposed a reverse search strategy for enu-
merating all edge-induced subgraphs from a single graph. The enumeration approach is
then employed for mining frequent and maximal subgraphs. To eliminate search branches
that will not result in maximal frequent subgraphs, we proposed pruning strategies that
employ the order in which branches are enumerated. The pruning strategies are possible
because the reverse search enforces strict definition on the order in which search nodes
are enumerated. Experiments on gene coexpression datasets demonstrate the effective-
ness of the proposed approaches. The proposed approach is thousands of times faster
than the existing algorithm. Enrichment analysis of the genesets in the maximal frequent
subgraphs reveal that maximal frequent coexpression subnetworks are enriched with
known biological annotations.
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