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Abstract

Background: Machine learning approaches for predicting disease risk from high-
dimensional whole genome sequence (WGS) data often result in unstable models
that can be difficult to interpret, limiting the identification of putative sets of
biomarkers. Here, we design and validate a graph-based methodology based on
maximum flow, which leverages the presence of linkage disequilibrium (LD) to
identify stable sets of variants associated with complex multigenic disorders.

Results: We apply our method to a previously published logistic regression model
trained to identify variants in simple repeat sequences associated with autism
spectrum disorder (ASD); this L1-regularized model exhibits high predictive accuracy
yet demonstrates great variability in the features selected from over 230,000 possible
variants. In order to improve model stability, we extract the variants assigned non-
zero weights in each of 5 cross-validation folds and then assemble the five sets of
features into a flow network subject to LD constraints. The maximum flow
formulation allowed us to identify 55 variants, which we show to be more stable
than the features identified by the original classifier.

Conclusion: Our method allows for the creation of machine learning models that
can identify predictive variants. Our results help pave the way towards biomarker-
based diagnosis methods for complex genetic disorders.
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Background
The advent of inexpensive whole genome sequencing methods in recent years has led

to the creation of supervised machine learning approaches for predicting putative gen-

etic variants from sequence data. Machine learning methods can effectively investigate

the entire genome and provide insight into the subset of variants most likely to influ-

ence a particular phenotype, which is particularly useful for disorders or traits with

complex, non-Mendelian inheritance patterns [1–5]. Since the high dimensionality of

variant feature sets paired with a comparatively low number of training samples tends

to result in model overfitting, feature selection methods are often used to narrow the

genomic search space and improve model generalizability. Embedded selection

methods, such as L1 and L2 regularization, are a subclass of feature selection algorithms

that learn the optimal subset of genomic features during model training.

Although such methods are widely used, regularized machine learning models often

face issues related to stability and robustness of features. Specifically, classification

models, which are designed to distinguish between case and control populations based

on whole genome data, provide coefficient scores representing the contribution of each

feature to the classification result. However, slight perturbations to the dataset or

model often drastically alter the subset of top-ranked variants determined to be corre-

lated with the phenotype, a phenomenon known as feature instability [2, 6, 7]. The ab-

sence of stability among predictive features means that variants with high coefficient

scores may not necessarily provide insight into the biological mechanisms underlying a

condition. This has particularly been observed in polygenic risk scores, which can tend

to vary based on the methods and data used to perform calculations [8]. Feature in-

stability often leads to irreproducible and inconsistent results, making this issue one of

the largest hindrances to clinical applications of both biomarkers identified by machine

learning techniques and polygenic risk scores [9].

In this work, we present an approach to improve the stability of regularized machine

learning methods through incorporation of biological information. We hypothesize that

the observed instability of regularized machine learning models trained on large gen-

ome datasets results from linkage disequilibrium (LD) among variants. Prior research

has shown that in such situations with correlated features, machine learning models

can pick from a number of equally predictive features, which leads to unstable results

[10, 11]. In addition, the presence of linkage between variants has been previously

shown to limit the predictive power of polygenic risk scores as well as cause models to

assign high coefficient scores to noncausal variants [12, 13].

To the best of our knowledge, our hypothesis has not been previously explored.

Standard methods for handling correlated genomic features include LD pruning, which

discards some correlated variants prior to model training, and loss function modifica-

tion, which assigns an additional regularization penalty based on feature correlation

[12, 14, 15]. Prior work has shown that the incorporation of LD information into regu-

larized models through such techniques can improve prediction performance. However,

the relationship between LD-based feature selection approaches and model stability has

not been extensively studied.

In order to identify a stable set of putative variants resistant to data perturbations, we

design an algorithm based on maximum flow, which utilizes the presence of LD to per-

form biologically-informed feature selection. We demonstrate the efficacy of our
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algorithm using a previously trained model predicting autism spectrum disorder (ASD),

a prevalent neurodevelopmental disorder affecting one in 40 children in the United

States [16]. Characterized by social impairments, restricted and repetitive behaviors,

and speech and language delay, ASD is known to be approximately 80% heritable, with

over 1000 genes contributing to disease susceptibility [17, 18]. In a previous study, we

utilized regularized machine learning to show that variants in a specific subclass of

noncoding DNA known as simple repeat sequences (SRS) may be predictive of the

ASD phenotype [19]. Here, we extend this work by narrowing the search space and

identifying a stable, robust set of putative SRS variants potentially linked with ASD. We

further validate our proposed algorithm through simulations on synthetic data.

In summary, our contribution in this work is two-fold: (1) we introduce a novel

methodology that utilizes LD relationships to improve the stability of regularized ma-

chine learning models, and (2) we utilize our method to identify a stable set of SRS var-

iants potentially linked with ASD.

Results
Stability analysis

We performed initial measurements of feature stability prior to implementing the

maximum-flow formulation. We began by encoding the 232,193 SRS variants into a

binary feature matrix, and we performed five-fold cross-validation with an L1-regular-

ized logistic regression classifier. The hyperparameter λ was set to 10 after tuning the

model through a grid search; the high regularization penalty allows for the selection of

a core set of variants contributing to the classifier output. Further details on hyperpara-

meter selection are included in our prior work [19]. We extracted variants with non-

zero coefficient scores from each of the five validation folds, resulting in a mean of

435.6 variants per fold.

We then performed a pairwise feature stability comparison across all ten pairs of fea-

ture lists. We observed Pearson correlation coefficients ranging from 0.394 to 0.451,

suggesting a moderate degree of similarity between coefficient scores assigned to a spe-

cific feature across folds. Kendall-Tau scores ranged between 0.039 and 0.178, and

Jaccard indices ranged between 0.205 and 0.248; this shows that predictive variants

identified by the classifier vary drastically as the underlying data is modified (Fig. 1).

We then implemented the maximum flow formulation and constructed a flow net-

work consisting of the five sets of variants with non-zero coefficients, as determined by

the 5-fold cross-validation analysis. The network includes 4358 nodes representing vari-

ants and 3757 directed edges; 699 of these edges connect a pair of variants in LD across

folds, with the remainder connecting in and out nodes within a single fold or connect-

ing nodes to the source and sink. A Ford-Fulkerson search through the graph resulted

in a flow value of 51. Each path consists of between one and five unique variants; the

51 paths include 55 distinct variants (Additional file 1).

In order to determine if these results suggest a higher degree of stability than expected

by chance, we performed a bootstrap test. We randomly selected five sets of SRS variants

and reconstructed the flow network. Results show that all 100 iterations of this test re-

sulted in a maximum flow value of 0. Flow networks had a mean of only 3.99 edges across

folds; this resulted in disjointed bootstrap graphs, showing that selecting features at

Varma et al. BioData Mining           (2021) 14:28 Page 3 of 15



random results in a complete lack of feature stability and that variants in LD are unlikely

to be selected in neighboring folds by random chance alone. Thus, our observed max-

imum flow of 51 supports our hypothesis that the classifier extracts variants in the same

genomic regions across different folds, resulting in a likely false perception of instability.

Finally, we validated the stability of the 55 identified SRS variants by evaluating

performance of a logistic regression classifier trained on this reduced feature set. We

performed 5-fold cross-validation across the training set and determined the stability of

these variants by recomputing the Pearson correlation coefficients, Kendall-Tau scores,

and Jaccard similarity indices. Results show a higher degree of stability, with Pearson

correlation coefficients ranging between 0.954 and 0.976 and Kendall-Tau scores ran-

ging between 0.438 and 0.580; this suggests that the classifier is assigning similar coeffi-

cient scores despite slight perturbations to the underlying data. Since we constrained

the feature set to be the same variant groups in each fold, the Jaccard index is trivially

1.0 (Fig. 2). When evaluated on a held-out test set consisting of 425 ASD patients and

76 control individuals, this classifier demonstrated high predictive performance, achiev-

ing a precision of 0.914, a recall of 0.821, and an AUC-ROC of 0.810.

Simulated dataset analysis

In order to further evaluate the maximum flow approach, we conducted additional experi-

ments on simulated data. We generated synthetic feature matrices and evaluated the per-

formance and stability of the following three regularized machine learning models: logistic

regression with L1 regularization, logistic regression with elastic net regularization, and

linear support vector classification (SVC) with L1 regularization. High levels of

regularization were used in order to encourage maximal dimensionality reduction, with

λ = 10 for L1 regularization, λ = 100 for feature correlation experiments with elastic net

regularization, and λ = 1000 for dataset size experiments with elastic net regularization.

Fig. 1 Initial feature stability metrics. Pearson correlation coefficients, Kendall-Tau scores, Jaccard similarity
indices, and rank plots were calculated for each pairwise grouping of validation folds. This provides a
quantitative analysis of feature stability by evaluating the effect of training set perturbations on the
resulting top-ranked variant list. The rank plots compare the magnitude of coefficient scores assigned to
features across a pair of folds, with the axes representing the relative rank of a particular variant. In the
presence of perfect model stability, the ranked variant lists would be equivalent between a pair of folds,
resulting in a trend line with a slope of 1. However, in this cross-fold analysis, the scatter plots show a high
degree of randomness, with trend line slopes approaching zero
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Specifically, we provide results for two types of simulations: (1) effect of dimensionality

and (2) effect of feature correlation on performance of the maximum flow approach. For

experiment (1), we test our model with three different dimensionalities (1000 features,

2000 features, and 5000 features) and set the level of feature correlation to be constant at

50%. Features are randomly divided into 23 groups of arbitrary sizes in order to represent

chromosomes. With probability p = 0.5, each feature will be assigned a vector of values

equivalent to that of another feature in the same chromosome group with Gaussian noise

applied. For experiment (2), we test our model with three different levels of feature correl-

ation (20, 50, and 80%). The number of features is held constant at 1000. AUC-ROC

scores, Pearson correlation coefficients, Kendall-Tau scores, and Jaccard indices were

computed for each model both before and after the implementation of maximum flow

(Fig. 3).

Results show that the maximum flow approach leads to consistent improvements in

model stability without compromising prediction performance. As shown in Fig. 3, the

AUC-ROC of all three models remains fairly consistent after the implementation of the

maximum flow algorithm, showing that the reduction in features does not negatively

affect classification accuracy. In addition, Pearson correlation coefficients and Kendall-

Tau scores show consistent improvements after the implementation of maximum flow,

suggesting that our proposed method can improve feature stability under a variety of

regularization types, feature correlation levels, dataset sizes, and models. Generally, the

maximum flow approach appears to work best at higher dimensionalities, where there

are at least 2–5 times as many features as samples, as well as moderate levels of feature

correlation ranging between 20 and 50%. The maximum flow algorithm is sensitive to

the level of regularization and type of model.

Biological validation

We conducted a literature search to understand the effect of the 55 stable SRS variants

on disease phenotype [20]. Since the impact of noncoding variants on disease

Fig. 2 Feature stability metrics after maximum flow procedure. After implementing the maximum flow
formulation, Pearson correlation coefficients, Kendall-Tau scores, Jaccard similarity indices, and rank plots
were recalculated for each pairwise grouping of validation folds, computed with binary representations of
the reduced feature set. This demonstrates an increased degree of stability when compared to the initial
results in Fig. 1
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manifestation is largely unknown, there are few functional annotations available for the

noncoding genome. Many identified variants occur in undefined intergenic regions of

the genome, with no known functional effects; 25 variants occur in intronic, upstream,

or untranslated regions of protein-coding or noncoding genes. A variant located at pos-

ition 127,832,148 on chromosome 10 is found in the intronic region of ADAM12, a

gene that is known to be significantly expressed in placental tissue [21]. ADAM12 gene

expression has also been linked to human intelligence through a genome-wide as-

sociation study (GWAS) and the expressed protein serves as a maternal marker for

Down’s syndrome; this evidence suggests an association with neural function [22,

23]. Similarly, a variant in chromosome 2 at position 104,690,808 is located in the

intronic region of the noncoding RNA gene LINC01965, which GWASs have asso-

ciated with Alzheimer’s Disease and ADHD; these disorders share clinical features

with ASD and are consequently likely to possess similar underlying genetic path-

ways [24–26]. Additional annotations are listed in Additional file 1.

Discussion
The recent revolution in low-cost sequencing technologies as well as the development

of high-performance computational infrastructure have contributed to the discovery of

numerous predictive variants associated with disease phenotypes. However, many

standard machine learning methods for elucidating the relationship between genotypes

and phenotypes are hindered by the presence of high-dimensional feature spaces, which

can lead to model instability. The impact of our work is two-fold, contributing to ad-

vancements in machine learning model development as well as improvements in the

genomic understanding of ASD and other complex multigenic human conditions.

We first develop an algorithm based on maximum flow, which utilizes the presence

of linkage disequilibrium in order to perform dimensionality reduction. By using

Fig. 3 Feature stability metrics on simulated data. The graphs above show that the implementation of the
maximum flow algorithm improves feature stability across various levels of feature correlation and dataset
sizes. The maximum flow procedure also maintains prediction performance (AUC-ROC). Since the Jaccard
index is trivially 1.0 after maximum flow, these values have been omitted from the figure
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traditional feature elimination methods (like L1 regularization) and the maximum flow

approach in succession, we were able to utilize biological knowledge to identify a core

subset of stable, putative variants. To the best of our knowledge, such a method has

never been used before for analysis of high-dimensional datasets. Harnessing informa-

tion provided by linkage relationships between variants can allow for effective filtration

of high dimensional feature spaces, enabling accurate identification of important gen-

omic features.

Second, we utilize this method to perform a targeted investigation of the noncoding

genome, examining the effects of variants in simple repeat sequences on the ASD

phenotype. The contribution of noncoding variants to complex developmental disor-

ders like ASD has been debated in recent years [27–29]. Our previous work suggested

a correlation between variants in SRS regions and the ASD phenotype [19]. In this

work, we extracted a list of 55 putative variants, which were demonstrated to be highly

stable, as shown by a cross-validation analysis.

This study has some limitations. Variants in repetitive regions, especially those in un-

stable expansions, are difficult to call, which could potentially result in low quality

reads. In addition, since the noncoding region is sparsely annotated, the majority of

variants identified in this analysis have no known function, so additional biological veri-

fication is needed to validate these findings. Also, the greedy path search through the

generated flow network possesses inherent randomness, with repeated runs and varied

fold ordering resulting in slightly differing paths; however, our additional testing

showed that this does not have a major effect on results. A path search performed on

120 different orderings of the five folds within the flow network resulted in a mean of

52.55 shared variants between pairs of orderings; similarly, 50 repeated runs of the al-

gorithm resulted in a mean of 52.48 shared variants.

Conclusion
In summary, we determined a set of 55 stable SRS variants potentially associated with

the ASD phenotype. The methodology designed in this work allows for the creation of

robust, interpretable, and scalable machine learning models that can effectively identify

predictive variants from a high-dimensional feature space. Our results help pave the

way towards biomarker-based diagnosis methods for ASD and other complex genetic

conditions.

Methods
We present an approach to identify genomic regions that remain stable despite slight

perturbations to the underlying data. We begin by creating a regularized machine

learning classifier to predict a disease phenotype from genomic regions; then, we imple-

ment an algorithm based on maximum flow to identify and extract stable features. We

apply our technique to ASD and validate our findings.

Measuring feature stability

We begin by constructing a binary feature matrix to encode the genome, with rows

representing samples and columns corresponding to genomic regions. Genomic regions

can encompass a variety of features, such as single nucleotide polymorphisms (SNPs),
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variants, or genes; in this analysis, we focus specifically on variants, which include both

SNPs and short indels. In order to generate a binary representation, we assigned each

cell a 1 if the sample expressed a homozygous alternate or heterozygous variant and a

0 if the base pairs at the site matched the reference sequence.

Then, we create a training set containing 80% of the samples in the dataset. A model

with stable features will be resistant to slight perturbations in the underlying data,

which increases confidence that top-ranked features are correlated with the phenotype

[30, 31]. In a machine learning setting, cross-validation can be utilized as a method for

perturbing the underlying data used to train a model and obtaining stability measure-

ments [32]. In order to estimate feature stability, we perform k-fold cross validation

across the training set with an L1-regularized logistic regression classifier. We select

k = 5 in this work. For each of the five validation folds, we extracted the list of all vari-

ants with non-zero coefficient scores.

Three metrics were used to characterize stability: (1) Pearson correlation coefficient,

which measures the similarity between the coefficient scores assigned to each variant

by the logistic regression model, (2) Kendall-Tau scores, which calculate the correlation

between the ranked variant lists, and (3) Jaccard similarity index, which measures over-

lap between two sets of features [32, 33]. Given two lists of features A and B with asso-

ciated coefficient scores w and v, the Pearson correlation coefficient is computed as

½Piðwi−wÞðvi−vÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ðwi−wÞ2

X

i
ðvi−vÞ2

q
, with values ranging between − 1 (perfect

negative correlation) and + 1 (perfect positive correlation). Kendall-Tau scores are com-

puted as P-Q/(P + Q), where P represents the number of concordant pairs and Q repre-

sents the number of discordant pairs when the features are arranged in rank order, and

range between − 1 and 1. The Jaccard index is computed as ∣A ∩ B ∣ / ∣A ∪ B∣, with

values ranging between 0 (no overlap) and 1 (identical). We computed these metrics

for all ten pairwise comparisons of feature lists. This presents an initial metric of stabil-

ity prior to implementation of our maximum flow formulation (Fig. 4).

Maximum flow formulation

In this section, we discuss the maximum flow algorithm, which is implemented as a

post-processing step to extract stable variants from the outputs of the regularized ma-

chine learning model created in the previous section. Biological datasets often present

the characteristic of feature interdependence, which can enable informed

Fig. 4 Stability Measurement Methodology. In order to characterize the stability of the model, we used an
approach based on cross-validation, in which we measure model performance across five splits of the
training set. We extract the list of predictive features (which are assigned non-zero coefficient scores) and
perform pairwise comparisons in order to quantify similarity
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dimensionality reduction based on domain knowledge [34]. In this work, we use the

presence of LD to group correlated variants identified as predictive by the 5-fold cross

validation performed in the previous section. Such an approach ensures that the model

remains resistant to perturbations in training data and outputs interpretable results that

can be utilized to measure the contribution of individual variants to disease phenotype.

Features identified by this method are stable variants that are potentially associated

with the manifestation of ASD.

LD is a genetic phenomenon that results in non-random correlation between a group

of variants or alleles. A pair of variants is said to be in LD if the observed frequency of

a particular haplotype in the genome is higher than the expected frequency [35]. LD is

typically measured using the R2 metric, which ranges from 0 to 1, with larger values

representing stronger association between variants [36]. It is important to note that

measurements of LD in a sample population tend to be sensitive to the presence of rare

variants, since limited data affects resulting scores.

We hypothesize that the presence of LD accounts for model instability; it is likely that

the classifier identifies the same predictive regions in each fold yet extracts different vari-

ants, creating the appearance of instability as observed in the results from the previous

section. We now discuss a novel formulation of the maximum flow algorithm, in which

we utilize the presence of LD to identify regions that are consistently present across folds;

this results in a set of stable variants that are likely to be correlated with the phenotype.

The 5-fold cross validation performed in the previous section results in five sets of

variants with non-zero coefficient scores. We begin by creating a graph G to represent

the presence of LD between pairs of these variants (4). Each node n in the graph is de-

fined by a variant v as well as the fold in which it occurs f, which we represent as the

tuple n = (v,f). Consider a pair of nodes n1 = (v1, f1) and n2 = (v2, f2); an edge is drawn

between the pair if the following criteria are satisfied: (1) n1 and n2 are present in

neighboring folds such that f2 = f1 + 1 and (2) n1 and n2 are in linkage disequilib-

rium as indicated by the R2 value between v1 and v2 exceeding 0.8 [36]. As a result

of criterion (1), G is necessarily a 5-partite graph. Variants closer together in phys-

ical space are more likely to be in LD, so in this analysis, we compute LD within

each chromosome; thus, an edge exists between nodes n1 and n2 if and only if v1
and v2 are located within the same chromosome. Consequently, G is composed of

23 disjoint subgraphs (Fig. 5).

We now utilize maximum flow to identify stable variants across folds [37]. We re-

structure G = (N,E) into a directed, acyclic flow network L = (N,E) such that it is amen-

able to the maximum flow formulation, a concept well studied in graph theory. To do

so, we add a source node s and a sink node t to the graph. A directed edge is drawn be-

tween the source s and all nodes with a fold value of f = 1. Similarly, an edge is drawn

between all nodes with a fold value of f = 5 and the sink t. To create the flow network

L, we first define the capacity of an edge as the maximum amount of flow that can pass

between nodes n1 and n2, defined as a real number c(n1,n2). We also define the flow

between nodes n1 and n2 as a real number l limited by the capacity of the edge, such
that l(n1,n2) ≤ c(n1,n2). With the exception of the source and sink nodes, the flow enter-
ing a node must equal the flow exiting the node. The total flow value of the graph can
be computed as the flow that leaves the source node or enters the sink node, repre-
sented by the summation

P
ðs;nÞ∈E lðs; nÞ =

P
ðn;tÞ∈E lðn; tÞ . Then, our goal is to
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maximize the total flow passing from the source to the sink node of a graph with re-
spect to the criteria defined above.

In a k-partite graph, it is possible that the set of unique edges that define the max-

imum flow can include non-unique nodes; however, we seek to identify the maximum

number of stable nodes across folds in order to identify regions in LD that are likely to

influence the phenotype. Thus, we must constrain the flow network such that each

node can only be used once within the flow. We do so by adding an additional

customization to the network L = (N,E) to constrain flow. We split each node n = (v,f)

into two nodes defined as nin = (v,f,in) and nout = (v,f,out), adding a single edge between

nin and nout. As a result of this modification, L doubles in size, becoming a 10-partite

graph (excluding the source and sink nodes) (Fig. 6).

All edges in L are assigned a capacity of 1. Then, the flow through L is computed

using the Ford-Fulkerson algorithm, a greedy path-search technique that identifies a

maximal set of valid paths between the source and sink nodes [38]. The runtime of

Ford-Fulkerson is O (VE2). The resulting maximum flow value defines the number of

valid paths through the graph, and the nodes along each flow path from the source to

sink represent a set of regions that remain stable across folds after accounting for the

presence of LD.

Data and preprocessing

We evaluated our methodology on 30x coverage whole genome sequence data collected

from 2182 children with ASD and 379 control patients with progressive supranuclear

palsy (PSP). The ASD population data was obtained from The Hartwell Foundation’s

Autism Research and Technology Initiative (iHART), which has collected whole gen-

ome sequence data from 1006 multiplex families, with at least two children in each

family presenting an ASD diagnosis [39]. Although case and control studies on ASD

typically assign unaffected family members as controls, subclinical phenotypes of ASD

that are often present in family members can suppress diagnostic signal. In order to

Fig. 5 Simplified depiction of graph model. Consider a simplified representation of the dataset, consisting of
variants 1A, 1B, 1C, and 1D (located on chromosome 1) as well as variants 2A, 2B, 2C, and 2D (located on
chromosome 2). Assume that a feature matrix consisting of all eight variants served as input to an L1-
regularized classifier, which performed five-fold cross validation and identified a set of top-ranked variants
for each validation fold. In the depiction above, we see that the variants are clustered by fold, with an edge
connecting a pair of nodes n1 and n2 if they are located in neighboring folds and have an R2 value greater
than 0.8. Note that identical variants (such as variant 1B in folds 4 and 5) are trivially in LD
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overcome this issue, we selected to use a separate outgroup of patients with PSP as the

control population. PSP is a neurodegenerative condition that has no etiological overlap

with ASD and is generally not heritable. Only one gene is currently known to be linked

with the condition. We provide further evidence to support the use of this control

group in our prior work [19].

In order to limit batch effects due to sequencing methodologies, the PSP and ASD

populations were both sequenced at the New York Genome Center with Illumina

HiSeq X instruments. There is no overlap between the cohorts.

Previously, we showed that a regularized machine learning model trained on variants

in Simple Repeat Sequences (SRS) was able to successfully differentiate ASD patients

from the control group with high accuracy, suggesting that variation in SRS may be

predictive of the ASD phenotype [19]. We now utilize the methods described in the

previous sections to address the issue of feature instability and extract a robust set of

SRS variants potentially correlated with the ASD phenotype.

SRS are segments of noncoding DNA that consist of repeating sequences of one to

ten base pairs. These regions are highly susceptible to mutations, and unstable expan-

sion of these regions has been linked to more than twenty neurodevelopmental and

neurodegenerative conditions [40, 41]. We downloaded a list of chromosomal coordi-

nates for all SRS from the UCSC Genome Browser, which identified 413,380 SRS re-

gions in the human genome [42]. Variants likely to result from batch effects were

removed using a genome-wide association test with batch (ASD and PSP) as the

Fig. 6 Simplified depiction of maximum flow formulation. (Upper) This is the flow network resulting from the
graph created in Fig. 4. Consider a simplified representation of the dataset, consisting of variants 1A, 1B, 1C,
and 1D (located on chromosome 1) as well as variants 2A, 2B, 2C, and 2D (located on chromosome 2).
Source and sink nodes are added to the graph, and the variants in each fold are duplicated to constrain
flow through the network. (Lower) A potential result of running the Ford-Fulkerson algorithm is shown
here. The value of the maximum total flow through the graph is 2, as shown by the two paths (highlighted
in red) that connect the source to the sink. We see from the graph that variants 1A, 1B, and 1C are part of a
region of the genome that remains stable across multiple folds; this property can be noted for variants 2A,
2B, and 2C as well
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phenotype [19]. After preprocessing, variants present in both the ASD and PSP popula-

tions were identified, resulting in a final list of 232,193 SRS variants.

We create a binary feature matrix consisting of 2561 rows (corresponding to the

2182 ASD patients and 379 control patients) and 232,193 columns (corresponding to

the SRS variants), which serves as input to the logistic regression classifier. To address

class imbalance between the case and control populations, we adjusted classifier

weights to be inversely proportional to class sizes. We then execute the maximum flow

procedure as described in the previous sections and extract the list of variants deter-

mined to be stable across folds.

Validation

We hypothesize that the presence of LD will cause the model to identify the same re-

gions in each fold yet extract different variants. To evaluate this hypothesis, we deter-

mine whether the variants identified by the classifier across the five cross-validation

folds are more stable than expected by random chance. We perform a bootstrap test,

randomly selecting five sets of variants from the complete set of 232,193 SRS variants,

maintaining sizes equivalent to those of the original folds. We construct a flow network

using the procedure defined in the previous section and use this to compute maximum

flow. We repeat this process 100 times. If our hypothesis is supported, we expect the

random flow networks to be highly-disconnected due to low linkage between random

variants. If our hypothesis is not supported, the random flow networks will result in

connected graphs with flow values similar to those observed in our true network.

Next, we determine if a classifier trained on the variants identified by the maximum

flow procedure is more stable than the original regularized machine learning model. To

do so, we utilize the regions identified by the maximum flow algorithm to construct

new feature matrices. Each flow path from the source to sink includes one to five

unique variants in LD; this group of variants defines a region that appears to be stable

across multiple validation folds. We construct a binary feature matrix with columns

corresponding to the grouped regions. Each grouped network feature is assigned a 1 if

at least one of those variants is present in the patient and a 0 otherwise. In order to

demonstrate an improvement in feature stability, we perform five-fold cross validation

across the training set with a logistic regression model trained on this reduced feature

set. We recompute stability metrics (Pearson correlation coefficient, Kendall-Tau score,

and Jaccard similarity index) for our reduced variant set and compare our results to the

initial stability measurements that we obtained prior to implementation of the max-

imum flow algorithm.

In order to characterize the stability improvements afforded by the maximum flow

approach, we conduct a series of experiments on simulated data. We use the make_

classification function in the scikit-learn library to generate synthetic feature matrices

for 2-class classification; the generated datasets consist of clusters of points distributed

around vertices of a hypercube, with an approximately equal number of points assigned

to each class [43]. This approach results in small effect sizes for individual features,

which is reflective of standard genomic datasets. We divide features into 23 groups of

arbitrary sizes in order to represent chromosomes, and we simulate linkage disequilib-

rium by introducing correlation between pairs of features located in the same
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chromosome. Then, we explore the effect of four parameters on the effectiveness of the

maximum flow algorithm: level of feature correlation (percentage of variants in LD),

dataset dimensionality (number of features), type of regularization (L1 or Elastic Net),

and type of classifier (logistic regression or linear support vector classifier). For each ex-

periment, we select parameters, compute baseline classifier performance and stability

metrics, execute the maximum flow algorithm, and recompute performance and stabil-

ity values with the smaller subset of features. Each experiment is repeated twenty times

with random feature matrices.

Finally, we search for and characterize the enrichment of our highest ranked variants

in biological roles associated with the autism phenotype.
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