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Abstract 

Binary classification is a common task for which machine learning and computa-
tional statistics are used, and the area under the receiver operating characteristic 
curve (ROC AUC) has become the common standard metric to evaluate binary 
classifications in most scientific fields. The ROC curve has true positive rate (also called 
sensitivity or recall) on the y axis and false positive rate on the x axis, and the ROC AUC 
can range from 0 (worst result) to 1 (perfect result). The ROC AUC, however, has several 
flaws and drawbacks. This score is generated including predictions that obtained insuf-
ficient sensitivity and specificity, and moreover it does not say anything about positive 
predictive value (also known as precision) nor negative predictive value (NPV) obtained 
by the classifier, therefore potentially generating inflated overoptimistic results. Since 
it is common to include ROC AUC alone without precision and negative predictive 
value, a researcher might erroneously conclude that their classification was success-
ful. Furthermore, a given point in the ROC space does not identify a single confusion 
matrix nor a group of matrices sharing the same MCC value. Indeed, a given (sensitiv-
ity, specificity) pair can cover a broad MCC range, which casts doubts on the reliability 
of ROC AUC as a performance measure. In contrast, the Matthews correlation coef-
ficient (MCC) generates a high score in its [−1;+1] interval only if the classifier scored 
a high value for all the four basic rates of the confusion matrix: sensitivity, specificity, 
precision, and negative predictive value. A high MCC (for example, MCC = 0.9), moreo-
ver, always corresponds to a high ROC AUC, and not vice versa. In this short study, 
we explain why the Matthews correlation coefficient should replace the ROC AUC 
as standard statistic in all the scientific studies involving a binary classification, in all 
scientific fields.

Keywords:  Matthews correlation coefficient, Receiver operating characteristic curve, 
ROC, Area under the curve, AUC​, ROC AUC​, Confusion matrix, Binary classification, 
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The advantages of MCC over ROC AUC​
Binary classification. A binary classification is a task where data of two groups need to 
be classified or predicted to be part of one of those two groups. Typically, the elements of 
one of the two groups are called negatives or zeros and the elements of the other group are 
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called positives or ones. To evaluate the binary classification, researchers have introduced 
the concept of confusion matrix, a 2× 2 contingency table where the positive elements cor-
rectly classified as positives are called true positives  (TP), the negative elements wrongly 
classified as positive are called false positives (FP), the negative elements correctly classified 
as negatives are called true negatives (TN), and the positive elements wrongly classified as 
negatives are called false negatives (FN). When the predictions are binary, the evaluation 
involves a single confusion matrix. Many times, however, the predictions are real values in 
the [0; 1] interval. In such cases, a heuristic cut-off threshold τ = 0.5 is used to map the 
real values into zeros or ones: predictions below τ are considered zeros, and the predictions 
equal or above τ are considered ones.

Caveat emptor: in this study, we refer to all the confusion matrix rates generated with 
cut-off threshold τ = 0.5 for the confusion matrix, except ROC AUC which refers to all the 
possible cut-off thresholds, as we explain later. This choice of the threshold follows a well 
consolidated convention in the literature, and allows a fair comparison of the considera-
tions presented hereafter with the outcome of most of the published references. When we 
write TPR = 0.724, for example, we refer to a sensitivity value calculated when the con-
fusion matrix cut-off threshold is τ = 0.5 . In the tables, we highlight this aspect by using 
the notation TPRτ=0.5 rather than just TPR. However, in the body of this manuscript we 
decided to use the simple term TPR to make this study more readable.

Additionally, even if some scientific discoveries presented in this study are valid also for 
multi-class classification, we concentrated this study on binary classifications for space rea-
sons. Analysis of multi-class classification rates [1–3] can be an interesting development for 
a future study.

Confusion matrix rates. The four categories of the confusion matrix, by themselves 
alone, do not say much about the quality of the classification. To summarize the outcome of 
the confusion matrix, researchers have introduced statistics that indicate ratios of the four 
confusion matrix tallies, such as accuracy and F1 score.

In a previous study  [4], we defined basic rates for confusion matrices as the following 
four rates: sensitivity  (Eq. 1), specificity  (Eq. 2), precision (Eq. 3), and negative predictive 
value (Eq. 4).

(1)
true positive rate, recall, sensitivity, TPR =

TP

TP+FN
(worst and minimum value 0; best and maximum value 1)

(2)
true negative rate, specificity, TNR =

TN

TN+FP
(worst and minimum value 0; best and maximum value 1)

(3)
positive predictive value, precision, PPV =

TP

TP+FP
(worst and minimum value 0; best and maximum value 1)
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A perfect classification, wherein all the positives are classified positives and all the 
negatives are classified negatives, means that all these four rates are equal to 1. Sensi-
tivity and specificity can be seen as the ratio of correctly classified positives and nega-
tives on the ground truth positives and ground truth negatives, respectively. Precision 
and negative predictive value, instead, can be interpreted as the ratio of correctly pre-
dicted positive elements made on all the positive predictions, and the ratio of all the 
rightly classified negative elements made on all the negative predictions.

Sensitivity and specificity are summarized in bookmaker informedness 
BM = TPR+ TNR− 1 , while precision and negative predictive value are summarized 
in markedness MK = PPV+NPV− 1 . Both BM and MK range in the [0; 1] interval 
with 0 meaning worst possible value and 1 meaning best possible score.

F1 score (Eq. 5) and accuracy (Eq. 6), additionally, are common statistics which indi-
cate respectively the ratio of true positives and true negatives over all the elements 
and the mean of precision and recall. F 1 score is actually a special case of the F β meas-
ure [5] with β = 1.

F1 score and accuracy, although popular, can generate inflated overoptimistic 
results, especially on positively-imbalanced datasets [6].

As we explained in other studies  [4, 6], the only rate that maximizes all the four 
basic rates is the Matthews correlation coefficient (MCC) (Eq. 7):

The MCC is a special case of the φ coefficient [7] for 2× 2 confusion matrices: a +1 
value corresponds to perfect classification; a value close to 0 corresponds to a predic-
tion made by chance; and −1 corresponds to a perfectly opposite prediction, where 
all the negative samples were predicted as positive and vice versa [8]. Although it was 
first introduced in biochemistry [8], the MCC gained popularity in several scientific 
fields, including software defection prediction  [9], recommender systems  [10], pat-
tern recognition  [11], medicine  [12], and affective computing  [13], just to mention 
a few. Recently, the MCC has been proposed as one of the standard measures for 
biomedical image analysis validation by an international consortium of researchers 
working on that field [14].

(4)
negative predictive value, NPV =

TN

TN+FN
(worst and minimum value 0; best and maximum value 1)

(5)
F1score =

2 · TP

2 · TP+ FP+ FN
= 2 ·

sensitivity · precision

sensitivity+ precision

(worst and minimum value 0; best and maximum value 1)

(6)
accuracy =

TP+ TN

TP+ FN+ TN+ FP

(worst and minimum value 0; best and maximum value 1)

(7)
MCC =

TP · TN− FP · FN
√
(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)

(worst and minimum value -1; best and maximum value +1)
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In some previous studies, we argued that the MCC is more informative than confusion 
entropy  [15], F 1 score  [6], accuracy  [6], balanced accuracy  [4], bookmaker informed-
ness  [4], markedness  [4], diagnostic odds ratio  [16], Cohen’s Kappa  [17], and Brier 
score [17].

The MCC is often scaled in the [0;  1] interval, so that it can have the same value 
range and meaning of the other statistical rates. We call this normalized coefficient 
normMCC (Eq. 8):

The key asset of the MCC is that its high value always corresponds to high values for 
each of the four confusion matrix basic rates: sensitivity, specificity, precision, and nega-
tive predictive value [4]. No other widespread confusion matrix statistic has this feature, 
although recently novel measures exploiting such property has been proposed [18, 19].

The ROC curve. Even if using a heuristic τ threshold for confusion matrices is a 
common practice in machine learning and computational statistics, it has the flaw of 
employing an arbitrary value. One might ask: “Why 0.5? Why not 0.4 or 0.6?”, and it 
would be a legitimate question. Some researchers employ an approach called reclassi-
fication where multiple cut-off thresholds are tested [20], but the arbitrariness of these 
choices still remains.

To avoid picking a specific arbitrary threshold, researchers introduced evaluation 
curves, that are depicted by computing statistics on all the possible confusion matrices 
of a binary classification. To generate these curves, each gold standard element of the 
test set is sorted increasingly and then used a cut-off threshold for a confusion matrix: 
predicted values above or equal to that threshold are mapped into 1s, while predicted 
values below that threshold are mapped into 0s. This way, the evaluation method com-
putes a specific confusion matrix for each element of the test set gold standard; if the test 
set contains N elements, then N confusion matrices are computed. The rates computed 
on these N confusion matrices are then employed as axes to generate points in curves 
such as the ROC curve [21].

The most common evaluation curve worldwide is the receiver operating characteristic 
curve  (ROC) [22], an evaluation technique originally introduced for operators of mili-
tary radar receivers during the Second World War. In the 1940s, radar operators in the 
United States army had to decide whether a blip on the screen indicated an enemy tar-
get, an allied ship, or just noise [23], and that is how and when the concept of ROC curve 
was introduced. The receiver was the soldier or army employee who was operating in real 
time to analyze radar images. He had to collect the information from the radar images, 
called characteristics, which is how the name receiver operating characteristics started.

In the early 1970s, Lee Lusted proposed the adoption of the ROC curves as diagnostic 
performance tool in radiology [24]. Since then, researchers began using the ROC curve 
as a binary classification assessment tool in several fields, especially in medicine, bio-
statistics, epidemiology, healthcare  [25–27], and bioinformatics  [28], until it became 
perhaps the most used metric to assess binary classification tests in any scientific 
field [29–31].

(8)
normMCC =

MCC+ 1

2
(worst and minimum value = 0; best and maximum value = 1)
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Nowadays, it is hard to find a binary classification study in biomedical informatics 
which does not include results measured with ROC curves. To give an idea, to date the 
scientific articles present in Google Scholar  [32] which contain the “ROC curve” key-
word total approximately 612 thousand. The same search made for “F1 score” led to 101 
thousand articles, while for “Matthews correlation coefficient” it found 20 thousand 
manuscripts to date: the number of studies that mention the ROC AUC is approximately 
30 times the number of articles which refer to Matthews correlation coefficient.

The ROC curve has true positive rate (also called sensitivity or recall) on the y axis and 
false positive rate on the x axis. The area under the ROC curve (ROC AUC, also known 
as c statistic) is one of the most common statistics used in scientific research to assess 
binary classifications, and can range from 0 (worst result) to 1 (perfect result) [30]. The 
ROC AUC, however, has multiple flaws and disadvantages [33–37], which have emerged 
especially in medical studies [33, 34, 38–43]: in particular, the ROC AUC is computed 
by taking into account the portions of ROC space where the classifications generated 
at least one sufficient rate between sensitivity and specificity and the portions of ROC 
space where both sensitivity and specificity are insufficient (Fig. 3a). We consider a score 
insufficient if its value is below 50% of correctness in its interval (in this case, TPR < 0.5 
and TNR < 0.5).

Moreover, the ROC AUC does not say anything about precision and negative predic-
tive value. The ROC curve, in fact, has sensitivity on the y axis and false positive rate 
on the x axis. Since false positive rate corresponds to 1− specificity , the area under the 
ROC curve is symmetrical on the y axis with the sensitivity-specificity curve. In particu-
lar, a high ROC AUC always corresponds to at least one high rate between sensitivity 
and specificity: as we can notice in the ROC example in Fig.  3a, a ROC curve always 
starts at the point with coordinates (TNR,TPR) = (1, 0) in the bottom left corner, and 
finishes at the point (TNR,TPR) = (0, 1) in the top right corner. Since ROC AUC goes 
from 0 to 1, the Cartesian distance of each point of the ROC from the plot origin can 
range only from 0 to 

√
2 = 1.414 . In the case of maximum perfect AUC = 1.000, the 

ROC curve includes the point (TNR,TPR) = (1, 1) on the top left corner, which cor-
responds to perfect maximum sensitivity and perfect maximum specificity. In a ROC 
curve, sensitivity (Eq. 1) and specificity (Eq. 2) are proportionally anti-correlated: if sen-
sitivity increases, specificity decreases, or vice versa.

In our Fig. 3a example, we have sensitivity = 0.724 and specificity = 0.789 when the 
cut-off threshold is τ = 0.5.

In non-perfect ROC curves, such as the Fig. 3a example, we can see that the points in 
the bottom left quadrant correspond to low sensitivity and high specificity, the points in 
the top right quadrant correspond to low specificity and high sensitivity, and the points 
in the top left quadrant correspond to both high specificity and high sensitivity.

Relationship between ROC AUC and (TNR,TPR) points. Consider the point X in 
the ROC space with coordinates (fpr, tpr) . For clearness’ sake, we use the alternative for-
mulation X(tnr, tpr) , using the reverse x axis true negative rate, complement to 1 to the 
original FPR axis, so that tnr = 1− fpr . This is graphically represented in Fig. 1.

Then, by construction, among all ROC curves having X as a point, the ROC maximis-
ing the ROC AUC can be built on the 5 points {(1, 0), (0, tpr),X , (tnr, 1), (0, 1)} and the 
corresponding ROC AUC has value (1− tnr) · tpr+ tnr = tpr+ tnr− tpr · tnr.
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This yields that, for a ROC curve having area under the curve α , all the points of the 
curve must satisfy the condition in Eq. 9:

Given that TNR, TPR, and α must be in the [0;  1] range, Eq.  9 is satisfied by all 
couples of coordinated lying above the upper arm of the equilateral hyperbole 
TNR+ TPR− TNR · TPR− α = 0 in a (regularly oriented) Cartesian plane with axes 
TNR and TPR.

The assets of a high ROC AUC. We define a ROC AUC “high” if it is greater than 
π/4 ≃ 0.785 . Geometrically, this value corresponds to the AUC of the ROC curve 
coinciding with the quarter of circle of radius 1, centered in (TNR,TPR) = (0, 0) . 
By definition, all the points of this ROC curve satify the half semicircle equation 
TNR2 + TPR2 = 1 . When all points of a ROC curve lie outside such circle, clearly the 
corresponding ROC AUC is larger than π/4 ≃ 0.785 : in terms of coordinates, this is 
equivalent to say that at least one of the two coordinates (TNR,TPR) is greater than 
√
1/2 ≃ 0.71 . Note that the point p, intersection of the circle with the top-left and 

bottom-right diagonal of the plane, has exactly coordinates 
√
1/2,

√
1/2  . Thus, this 

is a sufficient condition for a ROC curve to yield a high AUC: all the aforementioned 
considerations are visually represented in Fig. 3b.

(9)TNR+ TPR− TNR · TPR < α .

Fig. 1  ROC curves passing through the point X. Among all ROC curves passing through the point X(tnr, tpr) 
(with x coordinate expressed in terms of the secondary TPR axis), the black one is the curve maximising the 
AUC area, marked in yellow. The red dotted curve and the blue dotted curve represent two random ROC 
curves that pass through the highlighted X black point
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A necessary condition can be drawn by solving Eq. 9 for α = π/4 ≃ 0.785:

Solving in one of the variables, we obtain that the equation is satisfied by:

Since the equation is symmetric in the two variables, the same relation holds when 
swapping TPR and TNR. A visual representation of the solution space is shown by the 
yellow shaded area in Fig.  2, while a summarizing table with numerical values can be 
found in Table 1.

Finally, for ROC  AUC values larger than π/4 , the solution space is similar, but 
clearly narrower, since the curved line of Fig. 2 would be translated towards the top-
left angle of the Cartesian plane.

TNR+ TPR− TNR · TPR ≥
π

4
, with 0 ≤ TNR,TPR ≤ 1 .

{

TPR≥π−4·TNR
4−4·TNR for 0 ≤ TNR < π

4
∀ TPR ∈ [0, 1] otherwise .

Fig. 2  Solution of Eq. 9 for AUC = π/4 ≃ 0.785 . The points within the yellow area are all the possible 
(TNR, TPR) points when the ROC AUC has value 0.785. Please notice that the ROC curve with AUC = 0.785 is 
not represented here. The black-dotted curve depicted here is one of the boundaries of the yellow area
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More precisely, if the Cartesian distance between each point of the ROC curve and the 
bottom right corner point (TNR,TPR) = (0, 0) is always equal to 1, we have a half semi-
circle with area π/4 ≃ 0.785 (Fig. 3b). If each distance is always 1, then 

√
TPR2 + TNR2 

Table 1  Numerical approximation of some landmark values of (TNR, TPR) yielded by a high ROC AUC 
of 0.785, that approximates π/4 . For example, if TNR is 0.35, then TPR must be greater or equal to 
0.670. Due to the symmetric nature of the necessary condition Eq. 9, the relation between the two 
rates TNR and TPR holds when swapped. TNR ≥ 0.00 means that TNR can have any value in the [0; 1] 
range and TPR ≥ 0.00 means that TPR can have any value [0;  1] range. Please notice that the half 
semicircle ROC represented by the blue line in Fig. 3b has AUC = π/4 ≃ 0.785 , but there are several 
other ROC curves with the same AUC​

situation when ROC AUC = 0.785

if TNR = then TPR ≥ if TNR = then TPR ≥ if TNR = then TPR ≥

0.00 0.785 0.35 0.670 0.70 0.285

0.05 0.774 0.40 0.642 0.75 0.142

0.10 0.762 0.45 0.610 0.80 0.000

0.15 0.748 0.50 0.571 0.85 0.000

0.20 0.732 0.55 0.523 0.90 0.000

0.25 0.714 0.60 0.463 0.95 0.000

0.30 0.693 0.65 0.387 1.00 0.000

Fig. 3  Example of ROC curve with area under the curve. a plot: This illustrative example contains a 
ROC plot having AUC = 0.834 that indicates a good performance in the [0; 1] interval where 0 indicates 
completely wrong classification and 1 indicates perfect prediction. True positive rate, sensitivity, recall, 
TPR = TP/(TP + FN) . False positive rate, FPR = FP/(FP + TN) = 1− specificity . The AUC consists of both 
the green part and the red part of this plot. As highlighted by Lobo and colleagues [33], the calculation of 
the AUC is done by considering portions of the ROC space where the binary classifications are very poor: 
in the ROC space highlighted by the red square, the sensitivity and sensitivity results are insufficient (TPR < 
0.5 and FPR ≥ 0.5). However, this red square of bad predictions, whose area is 0.52 = 0.25 , contributes to the 
final AUC like any other green portion of the area, where sensitivity and/or sensitivity result being sufficient 
instead. This red square represents 30% of the AUC = 0.834 and 25% of the whole maximum possible AUC = 
1.000. How is it possible that this red portion of poor classifications contribute to the final AUC like any other 
green part, where at least one of the two axis rates generated good results? We believe this inclusion is one 
of the pitfalls of ROC AUC as a metric, as indicated by Lobo and colleagues [33] and one of the reasons why 
the usage of ROC AUC should be questioned. b plot: The same ROC curve with the half semicircle having 
AUC = π/4 ≃ 0.785 . Each point of the blue curve has radius = 1 and centre in (TPR, TNR) = (0, 0) . Point p: 
point with (TPR, TNR) = (

√

1
2
,

√

1
2
) ≃ (0.71, 0.71)
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must be equal to 1, too. If both TPR and TNR can range only in the [0; 1] intervals, then 
TPR =

√
1− TNR2 and TNR =

√
1− TPR2.

TNR and TPR have the same value only for the (TNR,TPR) = (

√

1
2 ,
√

1
2 ) ≃ (0.71, 0.71) 

point p in Fig. 3b, because TPR =
√
1− TNR2 =

√
1− 0.712 =

√
1− 0.5 =

√
0.5 = 0.71 

and TNR =
√
1− TPR2 =

√
1− 0.712 =

√
1− 0.5 =

√
0.5 = 0.71.

This means that, if an ROC AUC is greater than or equal to 0.785 and all the points 
are above or on the half semicircle with radius = 1 and centre in the bottom-left corner 
point (TNR,TPR) = (0,0), all the points of its ROC curve have both sensitivity in the 
[0.71;  1] interval or specificity in the [0.71;  1] interval. In other words, having a high 
ROC AUC means having at least TPR = 0.71 or at least TNR = 0.71, or higher values for 
both of them.

We represented the half semicircle ROC with radius = 1 and centre in the bottom-left 
corner (TNR,TPR) = (0, 0) with the blue line in Fig. 3b.

To summarize, in any case with a high ROC AUC and all the curve points on or above 
the half semicircle ROC, at least one rate between specificity and sensitivity is high.

We can therefore update the recap table of the meanings of the confusion matrix sum-
marizing rates (originally presented in Table 4 of [4]) in Table 2.

What a high ROC AUC does not say. However, the ROC curve and its AUC provide 
no information about precision and negative predictive value. A classifier might generate 
a high ROC AUC of 0.9, with low precision of 0.12 and low NPV of 0.3. If a researcher 
decided to look solely at the ROC AUC and forget about all the other rates, as often hap-
pens, they might wrongly believe that their classification was very good, when in reality 
it was not. Conversely, a high value of the Matthews correlation coefficient, always indi-
cates a high value for each of the four basic rates, eliminating the risk of overoptimistic 
or inflated outcomes.

Table 2  Recap of the correlations between the confusion matrix summarizing metrics and the basic 
rates. #: integer number. MCC: Matthews correlation coefficient  (Eq.  7). BA = balanced accuracy 
= (TPR + TNR)/2 . BM = bookmaker informedness = TPR + TNR − 1 . MK = markedness = PPV + NPV − 1 . 
F 1 score: harmonic mean of TPR and PPV  (Eq. 5). Accuracy: ratio between correctly predicted data 
instances and all data instances  (Eq. 6). We call “basic rates” these four statistics: TPR, TNR, PPV, and 
NPV. We calculate MCC, BA, MB, MK, F 1 score, accuracy, TPR, TNR, PPV, and NPV here with cut-off 
threshold τ = 0.5 : real-valued predictions greater or equal to 0.5 are mapped into 1s, and real-valued 
predictions smaller than 0.5 are mapped into 0s. The ROC AUC, instead, refers to all the possible cut-
off thresholds, as per its definition. We published an initial version of this table as Table 4 in the [4] 
article under the Creative Commons Attribution 4.0 International License

scenario condition of basic rates (with τ = 0.5) # guaranteed 
high basic 
rates

high MCCτ=0.5 high TPR, TNR, PPV, and NPV 4

high BAτ=0.5 high TPR, TNR, and at least one of PPV and NPV 3

high BMτ=0.5 high TPR, TNR, and at least one of PPV and NPV 3

high MKτ=0.5 high PPV, NPV, and at least one of TPR and TNR 3

high F 1 scoreτ=0.5 high PPV and TPR 2

high accuracyτ=0.5 high TPR and PPV, or high TNR and NPV 2

high ROC AUC​τ=all with all points 
above half semicircle ROC

high TPR and TNR, or at least one of TPR and TNR 1 
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A few other studies compared the MCC and the ROC in the past  [11, 44], but they 
were not focused on the four basic rates that we use here. In the past, some researchers 
presented variants of ROC curves (cost curve [45], summary ROC curve [46], concen-
trated ROC curve [47], total operating characteristic curve [48], partial ROC curve [49–
52], partial ROC  AUC index  [53], restricted ROC curve  [54], uniform AUC  [55], and 
not proper ROC curve [56]), but all of them share the same drawback with the original 
ROC curve: they do not provide any information about precision and negative predictive 
value obtained during the classification.

The MCC‑ROC AUC relationship
The analytical comparison between MCC and ROC AUC values for a classifier is hardly 
justifiable mathematically due to the intrinsic different nature of the two performance 
measures. Furthermore, it is straightforward to see that the same ROC  AUC can be 
associated to deeply diverse ROC curves (and, as such, classifiers), thus covering a broad 
range of possible MCC values. Even a single given point in the ROC space can yield a 
wide span of MCC values, as shown in what follows, where we investigate the math-
ematical intertwining between MCC and ROC AUC, to show the wide mutual variability 
preventing the existence of a direct relation linking the two measures suitable for an ana-
lytical analysis.

MCC and ROC

As a first step, we study the connection between points in the ROC space and the cor-
responding MCC. Despite the fact that MCC is generally acknowledged as robust 
against imbalanced datasets, this does not yield that MCC is independent of the class 
ratio. Actually, as shown by the MACQ Consortium [57], if we introduce the prevalence 
p = TP+FN

TP+TN+FP+FN as the ratio of the actual positive samples over the total number of 
samples, by definition specificity (TNR) and sensitivity (TPR) do not depend on p, while 
MCC does.

Such dependence is even non-linear, as evidenced by the following formula:

the aforementioned equation is thus positive for TNR+ TPR > 1 and nega-
tive otherwise, and it is antisymmetric for taking rates’ complement to 1: 
MCCTNR,TPR(p) = −MCC1−TNR,1−TPR(p).

Moreover, MCC is symmetric for swapping classes and sensitivity and specificity 
MCCTNR,TPR(p) = MCCTPR,TNR(1− p) ; furthermore, for extremely unbalanced dataset 
we have

for any value of sensitivity and specificity. In Fig. 4 we plotted several MCCTNR,TPR(p) 
curves as functions of the prevalence p for different values of specificity  (TNR) and 

(10)
MCCTNR,TPR(p) =

TNR+ TPR− 1
√

(

1− TNR+
p

1−p TPR
)(

1− TPR+
1−p
p TNR

)

.

(11)lim
p→0

MCCTNR,TPR(p) = lim
p→1

MCCTNR,TPR(p) = 0 ,
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sensitivity (TPR). In view of the aforementioned antisymmetry, we considered only the 
case TNR+ TPR > 1.

For a given pair (TNR,TPR) , the extreme value M̄ = maxp |MCCTNR,TPR(p)| is 
attained for p = p̄ , unique solution of the equation d

dpMCCTNR,TPR(p) = 0 . Defining 
� =

√

TPR(1−TPR)
TNR(1−TNR)  , then p̄ = 1

�+1 and M̄ = TNR+TPR−1√
(1−TNR+�−1 TPR)(1−TPR+� TNR)

.

Thus, for a point in the ROC space, defined by TPR and TNR, the corresponding value 
of MCC can vary (in the case TNR+ TPR > 1 ) between 0 and M̄ : in Fig. 5 we showed 
the heatmap of M̄ for the upper triangular half of the ROC space.

To provide a graphical representation of the situation we can use the Confusion Tetra-
hedron [16], a novel visualization tool able to behaviour of a binary classification metric 
on the full universe of the possible confusion matrices, by using the concept of equiva-
lence class. Consider the pair (x, y) = (FPR, TPR) =

(

FP
FP+TN ,

TP
TP+FN

)

 : since sensitivity, 

specificity and MCC are invariant for the total number of samples of binary dataset, 
each CM entry can be divided for the sum of the entries, so that all the four values TP, 
TN, FP and FN are limited in the unit range [0; 1]. As an example, all the three confusion 

matrices 
(

50 20
40 30

)

 , 
(

35 14
28 21

)

 and 
(

65 26
52 39

)

 share the same representative matrix 
(

0.3571429 0.1428571
0.2857143 0.2142857

)

.

Given one of such representative matrix 
(

TP FN
FP TN

)

 , all the multiple matrices 
(

n · TP n · FN
n · FP n · TN

)

 will share the same sensitivity, specificity and MCC for any n ∈ N . As a 

first observation, the pair (x, y) = (FPR, TPR) does not univocally identify a CM. For 

instance, the two confusion matrices 
(

0.4 0.26̄

0.03̄ 0.3

)

 and 
(

0.2 0.13̄

0.06̄ 0.6

)

 share the same pair 

Fig. 4  Plots of MCCTNR,TPR(p) for different values of TNR and TPR with TNR+ TPR > 1 . The behaviour of 
MCC as a function of the prevalence p depends on the particular pair (TNR, TPR) ; the curve tends to be 
more symmetric when values of TNR and TPR are similar, and MCC values are high when TNR and TPR are 
high. In the current plot we show three examples: one symmetric with low TNR and TPR values (red line), 
and two asymmetric curves, the former where both rates are high (black) and the latter where one one rate 
is high (blue). Due to the symmetry in the MCCTNR,TPR(p) equation, we can restrict the display to the case 
TNR+ TPR > 1 . Finally, the non-linearity of the same equation prevents from predicting more precise features 
of the MCC behaviour in terms of p, TNR, TPR
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(x, y) = (FPR, TPR) = (0.1, 0.6) . In detail, the four entries have ranges 0 < TP < y , 
0 < FN < 1− y , 0 < TN < 1− x , 0 < FP < x , and all the confusion matrices sharing 
the same pair (x,  y) are generated within these bounds by the linear relation 
TP/y+ FP/x = 1 . We provide a visual example of a set of confusion matrices corre-
sponding to the same (x, y) point in the Confusion Tetrahedron space in Fig. 6.

Finally, distribution of MCC values for a given (x, y) point in the ROC space is shown 
in Fig. 7: as the two most relevant features, the distribution is always heavily left skewed, 
and its shape mainly depends on the value of |y− x|.

All the results in this section highlight the broad variability affecting the relationship 
between a point in the ROC space and the associated MCC value, encompassing dispa-
rate situations in classification tasks and leaving room for deeply diverse interpretation 
of the same binary classification model.

ROC AUC and MCC dynamics

The results of the previous section hit even harder the behavior of the dynamics of 
ROC  AUC versus MCC values: here we investigate the ROC  AUC versus MCC rela-
tionship at a global level: being the analytical approach unfeasible, we show a land-
scape of simulations framing the issue. In particular, we simulated about 70 thousand 
binary classification tasks with number of samples randomly selected in the set 
{10k : k ∈ N, 2 ≤ k ≤ 6} and prevalence randomly extracted in the interval [0.05,  0.5]. 
We used the values of ROC AUC and MCC for these simulations as the axes for the scat-
terplot reported in Fig. 8.

Although there is quite a reasonably aligned trend between the two measures MCC 
and AUC, supported by a relatively high Pearson correlation value 0.928, such trend 
is dramatically changing if we consider only the experiments with positive MCC and 
AUC larger than one half. In these cases, Pearson correlation value drops down to 

Fig. 5  Heatmap of M̄ for the TNR+ TPR > 1 half of the ROC space. To get a global overview of the M̄ values 
as a function of TNR and TPR we display a heatmap representation using a yellow to red palette which 
highlights the non-linear behaviour of the mapping, as evidenced by the curved isolines. As a straightforward 
consideration, M̄ achieves high values only when both TNR and TPR are high: if one of the two rates is low, M̄ 
values are bounded into a medium range. As in the previous plot, due to the symmetry in the MCCTNR,TPR(p) 
equation, we can restrict the display to the case TNR+ TPR > 1
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0.803, since the range of possible MCC values for a given AUC value expands almost 
linearly with increasing AUC, reaching an interval spanning from about 0.2 to 1 for 
AUC approximating 1. Such data yield that, even for classification tasks whose AUC is 
very high or almost optimal, the range of possible situations in terms of MCC can be 
dramatically diverse, and even far from being evaluated as a good model. These cases 
happen frequently when the dataset is heavily unbalanced, and few samples of the less 
represented class keep being misclassified: this has an almost negligible effect on the 
AUC (which results quite high), while is correctly penalized by the MCC, whose value 
results low.

Two-rates plots In a similar but slightly different approach, we plot hereafter the 
values generated by ROC AUC and normalized MCC for three ground truths (posi-
tively imbalanced, balanced, and negatively imbalanced) of 10 points and 10 thousand 
different real-valued predictions for the same number of points in Fig. 9.

The three (a, b, c) plots are similar, and show the same trend: ROC AUC and MCC 
roughly follow the x = y trend, occupying approximately the x ± 0.3 = y± 0.3 space. 
As one can notice, multiple values of ROC AUC correspond to the same Matthews 
correlation coefficient and vice versa. There are no points near the top left and bot-
tom right corners of the plots, indicating that MCC and ROC are never opposite. 
However, there are many points for normMCC ≈ 0.5 and ROC AUC ≈ 0.5, indicating 
that ROC AUC can have high or low values while MCC indicate a prediction similar 
to random guessing, and vice versa.

Fig. 6  Three sets of confusion matrices sharing the same sensitivity and specificity in the Confusion 
Tetrahedron. Bottom line, (x , y) = (0.01, 0.95) , top line (x , y) = (0.55, 0.56) , middle line (x , y) = (0.4, 0.7) . 
Colors of points determined by MCC value, according to the gradient in Fig. 5. n is the sum of all entries of the 
confusion matrices
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We also generated plots for MCC versus specificity (Fig. 9c, d, e) and for MCC versus 
specificity (f, g, h). As one can notice, these six plots contain points that occupy almost 
all the plot space: each ROC AUC point corresponds to almost all the possible values of 

Fig. 7  Histogram (left) and box-and-whiskers (right) plots of MCC values for the three (x, y) points in the ROC 
space (0.01,0.95) (a,b), (0.55,0.56) (c,d), and (0.4,0.7) (e,f)

Fig. 8  Scatterplot of ROC AUC versus MCC values for 70 thousand simulated binary classification tasks
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sensitivity and specificity, with the only relevant exception of the top left and bottom 
right corners (where ROC AUC ≈ 1, TPR ≈ 1, and TNR ≈ 1).

On the same simulated data, we also produced the ROC AUC versus precision plots 
and the ROC  AUC versus NPV plots (Fig.  10). These plots are similar to the MCC-
ROC  AUC plots (Fig.  9a, b, c) shown earlier, indicating a common trend between 
ROC AUC and precision and between ROC AUC and NPV. However, it is clear that here 
in Fig. 10 the number of points is much less than in the previous cases. Moreover, we can 

Fig. 9  MCC versus ROC AUC plots, TPR versus ROC AUC plots, and TNR versus ROC AUC plots. We developed 
an R script where we randomly generated a binary ground truth vector of 10 elements, and then we 
executed a loop where we produced a list of synthesized predictions of real values between 0 and 1, for 
10,000 times. For each prediction, we computed the ROC AUC and its corresponding normalized MCC, 
where normMCC = (MCC + 1)/2 , sensitivity, and specificity with cut-off threshold τ = 0.5 . Negatively 
imbalanced ground truth (a,c,f): the ground truth labels are (0, 0, 0, 0, 0, 0, 0, 1, 1, 1), corresponding to 70% 
negative elements and 30% positive elements. Balanced ground truth (b,d,g): the ground truth labels are 
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1), corresponding to 50% negative elements and 50% positive elements. Positively 
imbalanced ground truth (c,e,h): the ground truth labels are (0, 0, 0, 1, 1, 1, 1, 1, 1, 1), corresponding to 30% 
negative elements and 70% positive elements. In each plot, the ground truth is fixed and never changes, 
while our script generated 10 random real values in the [0; 1] interval 10,000 times: each time, our script 
calculates the resulting ROC AUC and normMCC, which corresponds to a single point in the plot. The ground 
truth values and the predictions are the same of Fig. 10. TPR: true positive rate, sensitivity, recall (Eq. 1). TNR: 
true negative rate, specificity (Eq. 2). ROC AUC: area under the receiver operating characteristics curve. MCC: 
Matthews correlation coefficient (Eq. 7). normMCC: normalized MCC (Eq. 8). ROC AUC, normMCC, specificity, 
and sensitivity range from 0 (minimum and worst value) to 1 (maximum and best value). Blue line: regression 
line made with smoothed conditional means
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see more points on the ROC AUC axes: precision = 0, NPV = 0, precision = 1, and NPV 
= 1 correspond to multiple ROC  AUCs, including low values and high values. When 
precision or NPV clearly indicate a bad outcome or a good outcome (values 0 or 1), then 
ROC AUC can indicate either a poor performance or a good performance. This aspect 
confirms that ROC AUC is completely uninformative regarding precision and negative 
predictive value obtained by the classifiers.

Use cases
To further demonstrate how the MCC is more informative and reliable than the 
ROC  AUC, we list three significant, real use cases of binary classifications obtained 
through machine learning. We applied Random Forests  [58] to three different, inde-
pendent medical datasets publicly available online:

•	 UC1: electronic health records of patients with hepatitis C by Tachi et al. [59];
•	 UC2: electronic health records of patients with chronic kidney disease by Al-

Shamsi and coauthors [60];

Fig. 10  PPV versus ROC AUC plots and NPV versus ROC AUC plots. We developed an R script where we 
randomly generated a binary ground truth vector of 10 elements, and then we executed a loop where 
we produced a list of synthesized predictions of real values between 0 and 1, for 10,000 times. For each 
prediction, we computed the ROC AUC and its corresponding precision (PPV) and negative predictive 
value (NPV) with cut-off threshold τ = 0.5 . Negatively imbalanced ground truth (i,l): the ground truth labels 
are (0, 0, 0, 0, 0, 0, 0, 1, 1, 1), corresponding to 70% negative elements and 30% positive elements. Balanced 
ground truth (j,m): the ground truth labels are (0, 0, 0, 0, 0, 1, 1, 1, 1, 1), corresponding to 50% negative 
elements and 50% positive elements. Positively imbalanced ground truth (k,n): the ground truth labels 
are (0, 0, 0, 1, 1, 1, 1, 1, 1, 1), corresponding to 30% negative elements and 70% positive elements. In each 
plot, the ground truth is fixed and never changes, while our script generated 10 random real values in the 
[0; 1] interval 10,000 times: each time, our script calculates the resulting ROC AUC and normMCC, which 
corresponds to a single point in the plot. The ground truth values and the predictions are the same of Fig. 9. 
PPV: precision, positive predictive value (Eq. 3). NPV: negative predictive value (Eq. 4). ROC AUC: area under 
the receiver operating characteristics curve. ROC AUC, precision, and NPV range from 0 (minimum and worst 
value) to 1 (maximum and best value). Blue line: regression line made with smoothed conditional means
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•	 UC3: electronic health records of patients with hepatocellular carcinoma by San-
tos and colleagues [61].

We randomly split each dataset into training set  (80% patients’ profiles, randomly 
selected) and test set (20% remaining patients’ profiles), that we used as hold-out valida-
tion set [62]. We repeated the execution 100 times and recorded the average value for 
each final confusion matrix. We reported the results in Fig. 11 and Table S1.

For the UC1 use case, the ROC  AUC has a value of almost 0.8, that in the [0;  1] 
interval means very good classification (Fig. 11 and Table S1). If a researcher decided 
to only look at this statistic, they would be deceived into thinking that the classifier 
performed very well. Instead, if we look at the four basic rates, we noticed that the 
classifier obtained an excellent results for negative predictive value (0.981), sufficient 
scores for sensitivity and specificity, but an extremely low score for precision (almost 
zero). The ROC AUC does not reflect the poor performance of the classifier on pre-
cision. The MCC, instead, with is low value of +0.135 in the [−1;+1] range, clearly 
indicates that there is something wrong with this classification. It is clear that the 
ROC AUC generated an inflated, overoptimistic outcome, while the MCC produced a 
more reliable result.

In the UC2 use case (Fig. 11 and Table S1), the ROC AUC result being very high: 0.875, 
almost 0.9, indicating excellent prediction. Again, if a practitioner decided to stop here 

Fig. 11  Three use cases including results measured through MCC, ROC AUC, and the four basic rates. 
Positives: data of survived patients. Negatives: data of deceased patients. MCC: Matthews correlation 
coefficient. MCC: worst and minimum value = −1 and best and maximum value = +1 . TPR: true positive rate, 
sensitivity, recall. TNR: true negative rate, specificity. PPV: positive predictive value, precision. NPV: negative 
predictive value. ROC AUC: area under the receiver operating characteristic curve. The Random Forests 
classifier generated real predicted values in the [0; 1] interval. For the creation of the ROC curve, we used all 
the possible τ cut-off thresholds, as per ROC curve definition. For the creation of the single confusion matrix 
on which to compute MCC. TPR, TNR, PPV, and NPV, the heuristic traditional τ = 0.5 threshold: predicted 
values lower than 0.5 were mapped into 0s (negatives), while predicted values greater or equal to 0.5 were 
mapped into 1s (positives). The resulting positives and negatives were then compared with the ground truth 
positives and negatives to generate a τ = 0.5 threshold confusion matrix, which we used to calculate the 
values of MCC. TPR, TNR, PPV, and NPV listed in this table. We report these values in a table format in Table S1. 
UC1: dataset of electronic health records of patients with hepatitis C by Tachi et al. [59]. UC2: dataset of 
electronic health records of patients with chronic kidney disease by Al-Shamsi and coauthors [60]. UC3: 
dataset of electronic health records of patients with hepatocellular carcinoma by Santos and colleagues [61]
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and not to look at the other rates, they would think their classifier was an excellent one, 
and that everything went well. The four basic rates, however, tell a different story: while 
sensitivity and precision are quite high, specificity is quite low and NPV is just suffi-
cient. The ROC AUC fails to communicate the low value of true negative rate. The MCC, 
instead, with another low value  (+0.128), clearly communicates that the classification 
performance was poor.

In the third use case listed here, UC3 (Fig. 11 and Table S1), we can notice a ROC AUC 
value of 0.657, indicating a good performance of the classifier. Again, if the researcher 
stopped here, they would be deceived: the four basic rates tell a different story. A just 
sufficient sensitivity, a good specificity, an excellent precision, and a very low negative 
predictive value. The ROC AUC fails to inform us that NPV is almost zero. Again, here 
the MCC tells us the truth: a low value of +0.144 clearly indicates a poor performance, 
notifying us that the classifier obtained poor results.

Recap In a nutshell, if a study reported the results on these three medical datasets 
only as area under the receiver operating characteristic curve (ROC AUC = 0.781 for 
the first use case, ROC AUC = 0.875 for the second use case, and ROC AUC = 0.657 
for the third use case, in Table S1), the readership would think that the classifiers per-
formed very well. By looking at the values of sensitivity, specificity, precision, and 
negative predictive value obtained with the cut-off threshold τ = 0.5 , however, one 
would notice that the classifiers performed poorly on positive predictive value and/or 
negative predictive value. Conversely, this information is contained in the Matthews 
correlation coefficient (MCC), whose values correctly inform the readership about the 
average performance obtained by the classifiers on these datasets.

Warning: even if the MCC is able to correctly advice about the actual poor perfor-
mance of the classifiers, it does not inform about why these performances were poor. To 
understand why and how the classifiers did not predict efficiently, we recommend binary 
classification scholars to study the four basic rates  (sensitivity, specificity, precision, and 
negative predictive value in Table S1).

Discussion and conclusions
To evaluate binary classifications, it is a common practice to use confusion matrices 
generated for a particular cut-off threshold. When researchers prefer to consider all 
the possible thresholds as opposed to picking just one, the rates computed on the con-
fusion matrices can be used as axes for curves, such as the popular and well-known 
receiver operating characteristic (ROC) curve. A ROC curve has all the possible sen-
sitivity values on the y axis and all the possible false positive rate values on the x axis; 
the latter correspond to all the |1− specificity| scores. A common metric employed in 
thousands of scientific studies to assess a ROC curve is its area under the curve (AUC), 
which ranges from 0 meaning completely wrong performance) to 1 meaning perfect 
performance. The ROC AUC, however, suffers from multiple flaws and pitfalls [33, 34, 
37–43] and does not inform us about positive predictive value and negative predic-
tive value. Moreover, as we reported, a high ROC AUC can guarantee only one high 
value among sensitivity and specificity in the worst case, and high values of both in 
the best case. Such behavior has its roots in the intrinsic mathematical properties of 
sensitivity and specificity, the two rates identifying a point in the ROC space. Indeed, 
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not only a point in the ROC space is pointing to multiple given confusion matrices 
or classes thereof, but to such a given point, the range of MCC values corresponding 
to the aforementioned ROC point is quite broad, leaving room for a heterogeneous 
landscape of classifiers, with a quite different set of performances. Consequently, the 
value of the measure of the area under a ROC curve can represent deeply different 
situations, which calls into question the ROC  AUC reliability as a classifier’s good-
ness metric. Looking back, it is even surprising that such a faulty metric has been used 
so frequently in scientific research for so many years, especially for medical decision-
making regarding the lives of patients.

Speaking about poor-quality medical research, Douglas G. Altman once wrote: “Once 
incorrect [medical] procedures become common, it can be hard to stop them from 
spreading through the medical literature like a genetic mutation”  [63, 64]. We believe 
this to be the case in the usage of ROC curves for binary classification assessment.

In this study, we demonstrated that a more informative and reliable alternative to 
ROC AUC exists: the Matthews correlation coefficient (MCC). As we explained, a high 
MCC score always means having high confusion matrix basic rates: sensitivity, specific-
ity, precision, and negative predictive value.

While the MCC has some limitations: it is based on the usage of a heuristic cut-off 
threshold (usually set at τ = 0.5 ), and it is undefined in some cases, straightforward 
mathematical considerations can fill these gaps and allow MCC to be meaningfully 
defined for all confusion matrices [6]. However, the MCC does not lie: when its value 
is high, each of the four basic rates of a confusion matrix is high, without exception. 
This aspect makes the Matthews correlation coefficient superior to the ROC AUC.

As we explained in previous studies  [4, 6], the MCC is the most informative and 
reliable confusion matrix statistic to use if both positive elements and negative ele-
ments have the same importance in the scientific study. Only when a researcher 
wants to give more importance to one group over another, other rates might be more 
useful. For example, if correctly classifying positive data instances and positive pre-
dictions is the main goal of a study, F 1 score (Eq. 5) and Fowlkes-Mallows index [65] 
can be more appropriate rates. In any case, even when one of the two binary catego-
ries is more relevant than the other, we recommend to include the MCC among the 
list of metric employed to assess the results. Moreover, for diagnostics purposes, we 
suggest to always compute and include not only the MCC, but also the confusion 
matrix four basic rates  (sensitivity, specificity, precision, and negative predictive 
value): their results can be useful and helpful when a researcher needs to under-
stand why their binary classification failed. Broadly speaking, it is always better to 
employ multiple statistics for results’ evaluation, in any scientific project  [66–70]. 
While the Matthews correlation coefficient can tell if the binary classification was 
unsuccessful, in fact, unfortunately it cannot explain why. The four basic rates, on 
the other hand, can say on which areas of the predictions versus ground truth results 
were problematic.

Even if the four basic rates can be informative, none of them should be used as the 
standard metric to evaluate binary classifications: the MCC should employed for that 
scope. That is why we here we propose the MCC as the standard rate for binary classifi-
cation assessments, rather than the ROC AUC.
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The ROC curve was invented within the military environment in the 1940s, during 
the Second World: after more than 80 years of honorable service, we believe its time to 
retire has come. We have proved that the Matthews correlation coefficient, although less 
well-known, produces more reliable and more informative results about the correctness 
or the incorrectness of any binary classification. Therefore we recommend replacing the 
ROC AUC with the MCC as the standard binary classification metric for any scientific 
study in any scientific field.
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