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Abstract 

Background:  Discrimination between patients affected by inflammatory bowel 
diseases and healthy controls on the basis of endoscopic imaging is an challenging 
problem for machine learning models. Such task is used here as the testbed for a novel 
deep learning classification pipeline, powered by a set of solutions enhancing char-
acterising elements such as reproducibility, interpretability, reduced computational 
workload, bias-free modeling and careful image preprocessing.

Results:  First, an automatic preprocessing procedure is devised, aimed to remove arti-
facts from clinical data, feeding then the resulting images to an aggregated per-patient 
model to mimic the clinicians decision process. The predictions are based on multiple 
snapshots obtained through resampling, reducing the risk of misleading outcomes 
by removing the low confidence predictions. Each patient’s outcome is explained 
by returning the images the prediction is based upon, supporting clinicians in verify-
ing diagnoses without the need for evaluating the full set of endoscopic images. As 
a major theoretical contribution, quantization is employed to reduce the complexity 
and the computational cost of the model, allowing its deployment on small power 
devices with an almost negligible 3% performance degradation. Such quantization 
procedure holds relevance not only in the context of per-patient models but also for 
assessing its feasibility in providing real-time support to clinicians even in low-
resources environments. The pipeline is demonstrated on a private dataset of endo-
scopic images of 758 IBD patients and 601 healthy controls, achieving Matthews 
Correlation Coefficient 0.9 as top performance on test set.

Conclusion:  We highlighted how a comprehensive pre-processing pipeline plays 
a crucial role in identifying and removing artifacts from data, solving one of the prin-
cipal challenges encountered when working with clinical data. Furthermore, we 
constructively showed how it is possible to emulate clinicians decision process 
and how it offers significant advantages, particularly in terms of explainability and trust 
within the healthcare context. Last but not least, we proved that quantization can be 
a useful tool to reduce the time and resources consumption with an acceptable deg-
radation of the model performs. The quantization study proposed in this work points 
up the potential development of real-time quantized algorithms as valuable tools 
to support clinicians during endoscopy procedures.
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Background
Inflammatory Bowel Disease (IBD), including Crohn’s disease and Ulcerative Colitis, 
includes a group of chronic inflammatory disorders that affect the digestive tract. The 
main symptoms associated with IBD are persistent diarrhea, abdominal pain, rectal 
bleeding, weight loss, fever, anemia, anxiety and depression, and sometimes the con-
dition also affects mouth or skin. Unfortunately, the incidence and prevalence of IBD 
is increasing globally  [3, 16, 25], reducing the quality of life of millions of people  [32]. 
Moreover, after the acute phase, patients may experience flare-ups followed by asymp-
tomatic periods1. If these inflammations are not controlled, over time IBD can damage 
the intestine causing some severe problems like abscesses or increasing the colon cancer 
risk. Then, it is fundamental to diagnose IBD as soon as possible both to alleviate the 
symptoms and to avoid the appearance of other severe pathologies. IBD is diagnosed 
using endoscopy, radiology, histology or other bioimaging studies, such as MRI or com-
puted tomography  [13, 24]. Still, a precise and clearly defined criterion for diagnosing 
IBD is not available  [31] and this uncertainty may frequently lead to misclassification 
or repeated examinations. More recently, several Artificial Intelligence (AI) applications 
have been developed, aimed to automatically discriminate whether a patient is affected 
by IBD or not [7, 9, 30]. On the same line, Takenaka and coauthors [29] proposed a con-
volutional neural network using endoscopic images as inputs. All these works implement 
a per-image (or imagewise) analysis, which means that the model’s input is an image and 
not the whole sequence of images associated to a patient, thus injecting an unwanted 
overoptimistic overfitting effect known as information (or data) leakage [6]. In the cur-
rent proposal, our aims are to: 

1.	 Introduce a preprocessing pipeline that can be used to improve the quality of the 
data in order to efficiently feed it to the algorithm and make the whole procedure 
more robust. In particular, clinical data may contain features that are operator or 
instrument dependent like black margins or external medical objects that can be 
misleading for the model;

2.	 Devise a per-patient model mimicking the doctor decision process by considering 
ensemble of the multiple predictions instead of multiple single image predictions. 
This helps the model to avoid misleading outcomes and return the sequence of snap-
shots that influence the model’s prediction with the corresponding confidence, thus 
introducing an explainability component within the model. Hence, this approach is 
more suitable for clinical applications.

3.	 Investigate whether quantization, i.e. a discretization procedure in the learning 
phase, can be used to optimize the model inference preserving the prediction perfor-
mance. This is essential for the deployment of this algorithm inside hospitals where 
the amount of computational resources is limited, or even for its implementation as 

1  https://​www.​hopki​nsmed​icine.​org/​health/​condi​tions-​and-​disea​ses/​infla​mmato​ry-​bowel-​disea​se

https://www.hopkinsmedicine.org/health/conditions-and-diseases/inflammatory-bowel-disease
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a point-of-care test. Indeed, for a single patient thousand of pictures are routinely 
taken and consequently, the prediction time might experience a significant increase.

In what follows, all the ingredients of the introduced pipelines are first discussed; then 
results obtained with and without the quantization procedure are presented and dis-
cussed, concluding the manuscript with some final remarks.

Methods
The pipeline

The first component of the proposed workflow is an ad-hoc pre-processing pipeline 
aimed at cleaning the data, followed by a novel explainability feature embedded into the 
decision-making process. This aspect is of significant value from a clinical perspective 
as it enhances the transparency and interpretability of the model’s decisions. A general 
overview is presented in Fig. 1. As a first application, we used a subset of the SI-CURA 
dataset introduced in [9], focusing on discriminating 758 IBD patients from 601 healthy 
controls. The dataset has a patient-centric structure, i.e., each patient is represented by a 
separate set of endoscopic images. After performing image pre-processing, we ensured 
that the patient-centric structure of the data remained invariant. Subsequently, we parti-
tioned the dataset such that 80% of the patients were used for training, and the remain-
ing 20% were used for testing. To train the model, we unpacked the training set such that 
each patient’s image was treated as an individual sample. In detail, a pretrained ResNet50 
model is fine-tuned on the training dataset in a 5-fold cross validation schema to war-
rant reproducibility. The obtained trained model is then used to to construct an infer-
ence model that predicts the patient’s condition given his endoscopic images. Finally, the 
per-patient model is tested and evaluated on the test dataset.

Data preprocessing phase

In the clinical domain, artifacts and acquisition problems are regularly affecting biomag-
ing data, as shown by the examples reported in Fig. 2, resulting in a non negligible impact 
in terms of model effectiveness. The SI-CURA dataset contains data coming from differ-
ent hospitals, making them heterogeneous and strongly dependent on the acquisition 

Fig. 1  Overview of the methodology
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process and machines. In particular, raw data includes some completely uninformative 
images such as fully reflected or solid-colour pictures. Further, each image in this data-
set is bordered by a black margin and its shape and size are different across different 
data; finally, the presence of text portions and visible medical artifacts like probes are 
frequently encountered. These aforementioned data issues were also highlighted during 
a brief interpretability analysis by means of Captum [19] methods such as Saliency [18, 
26], Guided Backpropagation [22] and Occlusion [19], which provide some more insight 
regarding the areas and the patterns deemed as relevant at the prediction time. This 
analysis highlights how external objects such as text and medical tools turn out to be 
discriminating features for the classification task. To address this problem, we present a 
pre-processing pipeline capable of cleaning and harmonising data in an automatic and 
general context. A detailed overview of this pipeline is presented in Fig. 3.

In this respect, the implemented data preprocessing pipeline consists of the following 
steps: (1) apply the OpenCV Laplacian operator [2, 5] to assign a quality score to each 
image discarding images with score below a certain threshold; (2) for each image remove 
the text portion detected using Keras OCR2; (3) for each image fill the removed portion 
using in-painting algorithm LaMa network [28] which uses Fourier convolutions to fill 
in the deleted parts in a visually plausible and semantically coherent manner; (4) remove 
all the external object localizing them using MetaAI Detectron2 model [34] trained on 

Fig. 2  Samples containing artifacts and acquisition defects

Fig. 3  Detailed data preprocessing pipeline workflow

2  https://​keras-​ocr.​readt​hedocs.​io/​en/​latest/​index.​html

https://keras-ocr.readthedocs.io/en/latest/index.html
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a manually annotated subsection of the SI-CURA dataset and restore the removed part 
through LaMa network; (5) crop and resize each image to remove all the black margins. 
Note that this pipeline is quite general except for (4) and it does not require human 
supervision. Indeed, in case of data integration it is possible to preprocess data without 
any effort. Although it is not a perfect solution fitting all possible scenarios, this data pre-
processing phase, designed to be integrated into the SI-CURA experimental workflow, is 
capable to addressed topics and issues as yet little discussed in the field of medical data, 
in which there are still no shared established techniques and methods for processing and 
cleaning steps.

Model training

For our task, we opted to fine tune a ResNet50 model that was pre-trained on the Ima-
geNet dataset, using the PyTorch Hub. In particular, we trained the last two convolu-
tional layers and the last fully connected layer. To reduce the data splitting dependence, 
ensure robustness and prevent overfitting, we performed a 5-fold cross validation with 
Adam [17] as optimizer with a starting learning rate of 0.001. Decreasing the learning 
rate is a well known technique to improve both the trainability and the generalization 
properties of a model: hence, we decreased the learning rate by a factor of 0.1 every 20 
epochs. This approach can help the model converge more effectively and fine-tune the 
model’s performance. Initially using a higher learning rate allows for larger updates to 
the model’s parameters, while decreasing it over time allows for smaller adjustments, 
which can lead to better convergence and improved generalization. Moreover, we 
used LASSO (Least Absolute Shrinkage and Selection Operator) regularization which 
encourages the model to have sparse weight values by adding a penalty term to the loss 
function. This prevents the model from becoming too complex and overfitting the train-
ing data, by encouraging the model to prioritize fewer important features and reduce the 
impact of less relevant features.

Per‑patient inference model

To enhance the model’s interpretability and mimic the clinician’s decision process, 
we build a per-patient model. During an endoscopy, clinicians perform a diagnostic 
examination of the interior of patient’s body using an endoscope, which is a flexible 
tube with a light and camera attached to it. The camera captures real-time snapshots 
of the internal organs or structures and doctors visually examines these images on a 
monitor, looking for any abnormalities, lesions, tumors, inflammation, bleeding, or 
other relevant findings. Therefore, at the end of the exam, for each patient a sequence 
of snapshots are available and the length of this sequence varies in a patient-specific 
manner, meaning it can differ from patient to patient. Hence the model’s inputs are 
4-dimensional tensors whose slices are the RGB image corresponding to the snap-
shots aforementioned. Each image is then classified by the ResNet50 model inde-
pendently producing a sequence of outcomes with the corresponding probabilities. 
The model’s results are subsequently sorted based on their confidence levels, and 
predictions with confidence below a threshold value, t, are discarded. The remain-
ing predictions are then ensembled through a top-k weighted mean. This approach 
involves selecting the k highest confident predictions and then calculate a weighted 
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mean where the weights are given by the confidence itself. During the fine-tuning of 
the hyperparameters, if all the snapshots of a certain patient are discarded for a cer-
tain t the models returns “Unpredicted” and the prediction is considered wrong. If all 
the model predictions falls below the threshold t, it means that the model confidence 
is too low for that patient and it does not have enough certainty to extract a reli-
able decision. The higher the threshold t, the less the model influences the doctor’s 
opinion, and the best possible choice of t is the highest one that both preserves the 
performance metrics and allows the model to be helpful in the majority of the cases. 
This helps to avoid the dissemination of misleading information where the model’s 
confidence is too low. The k hyperparameter allows the model to include not only 
the most confident prediction, but one which represents a more robust and reliable 
approach. Indeed, data can be noisy or encounter distribution shifts [14]. This induces 
models to produce high confident incorrect predictions, that can be leveraged by 
ensembling more than one single patient’s image prediction. Both t and k are cho-
sen through a grid search with t ∈ {0.85, 0.87, 0.88, 0.90, 0.91, 0.93, 0.94, 0.96, 0.97, 0.99} 

Table 1  Grid search results on different values of the couple (t, k) where t is the threshold and k 
mean parameter when accuracy serves as metric

Per-Patient model Accuracy

t\k 1 2 3 4 5 6 7 8 9 10

0.85 0.977 0.977 0.977 0.977 0.977 0.977 0.972 0.972 0.967 0.958

0.87 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.967 0.963 0.953

0.88 0.977 0.977 0.977 0.977 0.977 0.977 0.972 0.972 0.967 0.958

0.90 0.977 0.977 0.977 0.977 0.977 0.977 0.972 0.972 0.967 0.958

0.91 0.977 0.977 0.977 0.977 0.977 0.977 0.972 0.972 0.967 0.958

0.93 0.977 0.977 0.977 0.977 0.977 0.977 0.972 0.972 0.967 0.958

0.94 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.967 0.963 0.958

0.96 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.967 0.963 0.958

0.97 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.967 0.963 0.958

0.99 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.967 0.963 0.958

Table 2  Grid search results on different values of the couple (t, k) where t is the threshold and k 
mean parameter when MCC serves as metric

Per-Patient model MCC

t\k 1 2 3 4 5 6 7 8 9 10

0.85 0.954 0.954 0.954 0.954 0.954 0.954 0.945 0.945 0.935 0.916

0.87 0.945 0.945 0.945 0.945 0.945 0.945 0.936 0.936 0.926 0.910

0.88 0.954 0.954 0.954 0.954 0.954 0.954 0.945 0.945 0.935 0.916

0.90 0.954 0.954 0.954 0.954 0.954 0.954 0.945 0.945 0.935 0.916

0.91 0.954 0.954 0.954 0.954 0.954 0.954 0.945 0.945 0.935 0.916

0.93 0.954 0.954 0.954 0.954 0.954 0.954 0.945 0.945 0.935 0.916

0.94 0.945 0.945 0.945 0.945 0.945 0.945 0.936 0.936 0.926 0.916

0.96 0.945 0.945 0.945 0.945 0.945 0.945 0.936 0.936 0.926 0.916

0.97 0.945 0.945 0.945 0.945 0.945 0.945 0.936 0.936 0.926 0.916

0.99 0.945 0.945 0.945 0.945 0.945 0.945 0.936 0.936 0.926 0.916
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and k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . We select the tuple (t,  k) that maximizes the Mat-
thews Correlation Coefficient (MCC) [8, 15]. The grid search results are reported in 
Tables  1, 2, and 3. It is worth noticing that different combinations of t and k yield 
the same results, meaning that the model is able to identify the presence of IBD with 
high confidence and the per-image predictions are consistent within the same patient. 
Anyway, to minimize the dissemination of misleading information and to include in 
the prediction as much information as possible for each sample, the choice of the 
optimal (t, k) tuple was guided by maximizing the MCC metric. The choice of MCC 
is recommended since it is a robust statistical measure that assigns a high score only 
when the prediction achieves good results across all four categories of the confu-
sion matrix proportionally on both the positive and negative cases in the dataset [8]. 
According to this criteria, the chosen tuple is (t, k) = (0.93, 6) and in this case it maxi-
mizes also the accuracy and the F1-score. Furthermore, we have tested the frequency 
of the “Unpredicted” samples varying the confidence threshold (see Table 4). Notice 
that t = 0.93 is the highest threshold that guarantees a prediction for all validation 
samples. Another point in favor of the patientwise model’s reliability is the structure 
of the model’s outcomes. Indeed, in addiction to the patient’s health state prediction, 

Table 3  Grid search results on different values of the couple (t, k) where t is the threshold and k 
mean parameter when F1-score is used as metric

Per-Patient model F1-score

t\k 1 2 3 4 5 6 7 8 9 10

0.85 0.979 0.979 0.979 0.979 0.979 0.979 0.974 0.974 0.970 0.962

0.87 0.974 0.974 0.974 0.974 0.974 0.974 0.970 0.970 0.966 0.958

0.88 0.979 0.979 0.979 0.979 0.979 0.979 0.974 0.974 0.970 0.962

0.90 0.979 0.979 0.979 0.979 0.979 0.979 0.974 0.974 0.970 0.962

0.91 0.979 0.979 0.979 0.979 0.979 0.979 0.974 0.974 0.970 0.962

0.93 0.979 0.979 0.979 0.979 0.979 0.979 0.974 0.974 0.970 0.962

0.94 0.974 0.974 0.974 0.974 0.974 0.974 0.970 0.970 0.966 0.962

0.96 0.974 0.974 0.974 0.974 0.974 0.974 0.970 0.970 0.966 0.962

0.97 0.974 0.974 0.974 0.974 0.974 0.974 0.970 0.970 0.966 0.962

0.99 0.974 0.974 0.974 0.974 0.974 0.974 0.970 0.970 0.966 0.962

Table 4  Number of validation patients that the per-patient model can not classify since the 
prediction confidence is too small for that specific value of the threshold t 

Threshold (t) Unpredicted

0.85 0

0.87 0

0.88 0

0.90 0

0.91 0

0.93 0

0.94 1

0.96 1

0.97 2

0.99 4
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clinicians can visually check the snapshots that influence the model’s outcome. This is 
an important features in clinical applications since it enables to perform a quick and 
easy verification.

Quantization

The patient-by-patient inference leads to a more robust patient prediction, albeit at the 
expense of longer inference time and increased resource consumption. Specifically, to 
predict a patient’s health condition, the inference phase is applied to the sequence of the 
available images for that particular patient. In this second part of the work, we investi-
gate how quantization preserves the evaluation metrics on this specific task and we 
assess the gain in terms of prediction time. The idea of quantizing neural networks 
(QNN) has been introduced in the 1990s [12, 21] to make the hardware neural networks 
implementation easier. Recently, it turned out that quantizing neural network provides 
benefits also in term of size reduction of standard neural networks architecture, which 
are characterized by millions of parameters and hence they are very demanding in terms 
of storage memory, and energy consumption. Indeed, this creates an obstacle towards 
their deployment on low-memory and low-power architectures or for fast inference 
constrained applications  [23, 27]. The primary concept underlying quantization is to 
reduce the precision of both weights and activations without performance degradation. 
This is done by constraining the model’s parameters to live in a finite set and replacing 
the model’s activations with functions with finite range, such as linear combinations of 
Heaviside functions. One of the easiest and wider use technique to achieve quantization 
is the post training quantization (PTQ) [1, 11]. Fixed the quantization range Q , the quan-
tization is done through a quantizer function Q : R → Q that maps a real number x to 
Q(x) = round x

s
+ Z  where s and Z are the scale and the zero point respectively. The 

scale s and the zero Z play a central role in adjusting the magnitude of the input entries 
to be projected on Q in an optimal way. To quantize a multidimensional tensor, the func-
tion Q is applied element-wise setting s = β−α

βq−αq
 and Z = −

(

α
s
− αq

)

 where [α,β] is the 

clipping range of x and [αq ,βq] are the smaller and the larger value in Q , respectively. 
While αq and βq are fixed a priori, we need some estimates for the interval [α,β] . In post 
training quantization the clipping range is estimated through the calibration process. 
During this procedure, the maximum and minimum element values are collected on a 
subset of the validation dataset by attaching particular modules after the specific mod-
ules we want to quantize. These statistics are then used to define α and β . There are 
mainly two different strategies to set the clipping range: the affine or asymmetric quanti-
zation scheme and the symmetric quantization scheme. The asymmetric quantization 
scheme  [33] assigns the input range to the minimum and maximum observed values, 
that is α = min(x) and β = max(x) and computes s and Z as explained above. The sym-
metric quantization scheme centers the input range around zero avoiding the needed of 
Z and sets −α = β = max(|max(x)|, |min(r)|) . The asymmetric quantization scheme is 
commonly employed to quantize the positive model activations, such as those produced 
by the ReLU function. On the other hand, the affine quantization scheme proves to be 
more suitable for quantizing weight tensors, which may include both positive and nega-
tive values. Quantization parameters can be computed whole tensor or separately for 
each channel. Clearly, the first approach enables a significant reduction in the required 
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number of quantization parameters, and hence the model complexity, but it often ends 
up with poor performance. The channelwise approach performs better than the tensor-
wise approach, but its overall cost is slightly higher. To further improve the performance 
of QNNs, Quantization Aware Training (QAT) has been introduced [20, 33]. The funda-
mental idea behind this method is to simulate the quantization operation during the 
training phase to adapt the model to the final quantization. This simulated quantization, 
called also fake quantization, first performs a calibration though observers as in PQT to 
properly initialize the scale and zero point. Subsequently, all the quantization parame-
ters are frozen, and the model undergoes training for several epochs. It is worth noting 
that during this stage, the observers serve not only as statistics collectors but they also 
perform a pseudo quantization. This implies that they apply the function Q to the 
respective tensors, yet the output is still treated as a continuous parameter. Note that 
training such kind of model is not trivial because the functions Q are piecewise constant. 
Hence, it is only piecewise differential and the gradients are zero almost everywhere. To 
address this issue, the Straight-through estimator (STE) has been proposed [4, 35]. This 
involves the biased estimation of the gradient as a hard threshold function, which means 
that the gradient of x is one if it belongs to the quantization range and zero otherwise. 
Another widely use quantization training algorithm is Parameterized clipping activation 
method (PACT) presented in [10]. The underlying PACT training scheme is the same as 
in QAT, but this time the scale parameter of the activation functions is considered as 
another trainable parameter. This is done by setting s = α̃

βq−αq
 where α̃ is the activation 

clipping parameter.

Results and discussion
Continuous model

First, results on the test set – obtained by the classical algorithm in floating point arith-
metic – are shown in Table 5: mean µ of the three metrics are reported together with the 
radius ρ of the 5%-95% Confidence Intervals (CI) obtained through 105 bootstrap resam-
pling, assuming normality in the metrics’ distribution.

Quantized model

We present the results obtained by applying PTQ, QAT and PACT to our model in 
Table  6. We made attempts to quantize all layers of ResNet50, but unfortunately, this 
resulted in a significant degradation of the model’s performance. This phenomenon 
arises from the fact that layers with fewer parameters generally exhibit a larger quantiza-
tion error, as their parameters hold crucial information for solving the specific task at 

Table 5  Model performance on the test set. MCC: Matthews Correlation Coefficient; Acc: 
accuracy;  F1:  F1-score;  µ  mean of the metric over  105  bootstrap resampling;  ρ  radius of the 
corresponding 5%-95% CI

Category MCC Acc F1

µ ρ µ ρ µ ρ

per-patient 0.90 5 · 10−4 0.95 2 · 10−4 0.96 2 · 10−4

per-image 0.84 2 · 10−4 0.94 10
−4 0.94 7 · 10−5
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hand. Consequently, they are highly involved in the final model output and even minor 
variations in their values can lead to a substantial decline in performance. Hence, we 
performed some trials to decide which layers should be quantized, seeking a trade off 
between minimizing the performance degradation and maximizing the quantization 
advantages. It turned out that keeping the first layer and the classifier unquantized 
allows achieving approximately 3% of the overall metrics reported in Table 5. The results 
for the different types of quantization are reported in Table 6 with the corresponding 
bootstrap CIs.

Notice that PTQ is outperformed by the other two methods. In the table the best 
obtained results is reported, but the variance in performance degradation obtained with 
this method is high depending on the calibration set. Next, we explore the impact of 
quantization on the model’s weight and its effect on inference time when running on 
a CPU. The storage capacity to save a floating-point (FP) ResNet50 model amounts to 
95.50 MB, whereas saving the quantized optimal configuration requires 24.52 MB, one-
fourth of the storage consumption of the FP counterpart. We performed also a speed 
test on a 12th Gen Intel(R) Core(TM) i9-12900KF comparing the quantized per-patient 
against the FP per-patient inference speed. It turns out that the quantized model is twice 
as faster compared to FP computation, requiring 6.87 seconds compared to 14.37 sec-
onds to predict the health condition of the same patient.

Conclusion
In this study, we have developed and assessed a specific deep learning framework to 
automatically identify inflammatory bowel disease. We showed that one of the major 
problems encountered when dealing with clinical data is the presence of artifacts that 
could affect the final model performance. Therefore, we presented a pre-processing pipe-
line to automatically detect and delete those artifacts producing a cleaned and ready-to-
use dataset. Furthermore – guided by the idea of mimicking the clinical decision process 
– we have developed a per-patient based model that makes patient’s diagnoses taking 
into account also of the confidence of different predictions. This reflects into a model 
cautiousness that can be adjusted either by maximizing the overall task performance 
or by the user allowing the model to abstain from predicting when uncertainty occurs. 
Moreover, we explored a way towards interpretable design that can help healthcare pro-
fessionals both in diagnosing IBD and in sifting through the extensive volume of images 
generated during endoscopic examinations. This is achieved by offering to the clinicians 

Table 6  Partially quantized model performance on the test set. MCC: Matthews Correlation 
Coefficient; Acc: accuracy; F1 : F1-score; µ mean of the metric over 105 bootstrap resampling; ρ radius of 
the corresponding 5%-95% CI

Method MCC Acc F1 Unpredicted

µ ρ µ ρ µ ρ

PTQ 0.82 6 · 10−4 0.91 3 · 10−4 0.91 4 · 10−4 2

PACT​ 0.86 6 · 10−4 0.93 3 · 10−4 0.93 3 · 10−4 2

QPWL 0.87 5 · 10−4 0.94 3 · 10−4 0.93 3 · 10−4 1

QAT 0.82 6 · 10−4 0.91 3 · 10−4 0.91 3 · 10−4 1



Page 11 of 12Datres et al. BioData Mining           (2023) 16:33 	

not only the patient’s prediction but also a set of k images that the model prioritizes to 
reach its decision. We tested this model specifically on IBD but having in mind a more 
general clinical framework in which it can be applied. The per-patient model achieves 
a test set performance MCC=0.90 for the classification of healthy controls versus IBD 
patients. Finally, we showed how quantization can significantly reduce the memory and 
the computational resources required for predictions. This empirical study on quantiza-
tion performance provides also positive insights on the feasibility of making real-time 
predictions during endoscopy helping clinicians to identify the pathological areas in the 
affected bowel.
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