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Abstract

Background: Self organizing maps (SOM) enable the straightforward portraying of
high-dimensional data of large sample collections in terms of sample-specific images.
The analysis of their texture provides so-called spot-clusters of co-expressed genes
which require subsequent significance filtering and functional interpretation. We
address feature selection in terms of the gene ranking problem and the
interpretation of the obtained spot-related lists using concepts of molecular function.

Results: Different expression scores based either on simple fold change-measures or
on regularized Student’s t-statistics are applied to spot-related gene lists and
compared with special emphasis on the error characteristics of microarray expression
data. The spot-clusters are analyzed using different methods of gene set enrichment
analysis with the focus on overexpression and/or overrepresentation of predefined
sets of genes. Metagene-related overrepresentation of selected gene sets was
mapped into the SOM images to assign gene function to different regions.
Alternatively we estimated set-related overexpression profiles over all samples
studied using a gene set enrichment score. It was also applied to the spot-clusters to
generate lists of enriched gene sets. We used the tissue body index data set, a
collection of expression data of human tissues as an illustrative example. We found
that tissue related spots typically contain enriched populations of gene sets well
corresponding to molecular processes in the respective tissues. In addition, we
display special sets of housekeeping and of consistently weak and high expressed
genes using SOM data filtering.

Conclusions: The presented methods allow the comprehensive downstream analysis
of SOM-transformed expression data in terms of cluster-related gene lists and
enriched gene sets for functional interpretation. SOM clustering implies the ability to
define either new gene sets using selected SOM spots or to verify and/or to amend
existing ones.
Introduction
High-throughput genome-scale sequencing and microarray technologies generate huge

amounts of data which challenge tasks such as dimension reduction, data compression,

visual perception, data integration and extraction of biological information. A natural

basis for organizing gene expression data is to group together genes with similar pat-

terns of expression, e.g. of highly correlated expression values. A series of different

similarity measures and clustering algorithms have been developed in the last decade
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for this purpose. Another important task in extracting reliable information is to exam-

ine the extremes, e.g., genes with significant differential expression in two individual

samples or in a series of measurements and to judge the degree of significance. To in-

terpret the extracted genes in terms of biological function gene set enrichment meth-

ods have been developed. They link previous biological knowledge about groups of

functionally related genes with the results of differential expression analysis.

This study addresses the question how to combine self organizing maps (SOM) ma-

chine learning with differential expression and gene set enrichment analysis. SOMs de-

scribe a family of nonlinear, topology preserving mapping methods with attributes

clustering and strong visualization through the use of neural networks. They are applied

in many fields like bioinformatics for dimension reduction and the grouping and

visualization of high dimensional data. Thus, SOMs accomplish two goals: they reduce

dimensions and display similarities. Moreover, SOMs are very intuitive and easy to under-

stand and therefore used in decision-making. SOMs were devised by Kohonen [1], and

first applied by Tamayo et al. [2] and Törönen et al. [3] to analyze gene expression data.

Our approach follows that of Nikkilä et al. [4] and of Eichler et al. [5] who configured

the SOM method in such a way that it combines sample- and feature-centered perspec-

tives to portrait the expression landscapes of individual samples. This method trans-

forms large and heterogeneous sets of expression data into colored images which can

be directly compared in terms of similarities and dissimilarities of their textures. These

images represent two-dimensional views on high-dimensional data, akin to multidimen-

sional scaling with the following benefits: Firstly, they provide individual visual ‘por-

traits’ for each sample which serve as new, complex objects for next level analysis in

terms of visual recognition and statistical analysis. Secondly, they strongly reduce the

dimension of the original data while preserving their information richness (because ori-

ginal data are not removed but remain ‘hidden’ behind the transformed data).

The SOM method is relatively infrequently applied to high-dimensional molecular

data compared with alternative approaches such as hierarchical clustering despite these

convincing advantages. One reason might be seen in the fact that downstream data

mining tasks require the availability of appropriate algorithms and of suited program

tools to generate the desired information. The sample ‘portraits’ represent mosaic-

images where each tile represents a ‘minicluster’ of single-genes of similar expression

profiles. It is characterized by one prototypic expression profile, called metagene, sub-

suming the mean expression profile of the associated genes. Metagenes of similar pro-

files usually cluster together into so-called spots due to the specifics of the machine

learning algorithm. These spot clusters provide lists of candidate genes co-expressed in

the samples studied.

Our previous publication addresses methodical aspects of the machine learning step

and details of data structure [6]. SOM machine learning alone is however insufficient to

extract important features and biological information from the data. The obtained spot-

clusters need further filtering and association with previous knowledge for this purpose.

Here we address these data mining tasks with special emphasis on the structure of SOM-

transformed data to enable their downstream analysis and biological interpretation.

The first focus of this publication addresses the gene ranking problem in SOM-

transformed data. SOM training typically uses a simple fold-change (FC) scale with re-

spect to the mean expression of each gene in the pool of all samples to detect genes of
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interest. The FC-score however does not provide explicit information about statistical

significance for the observed expression changes and thus it might have disadvantages

in generating false signals, e.g., if large expression changes are paralleled with high un-

certainties of the respective signals or, vice versa, if relatively small changes refer to ac-

curate signals. SOM mapping must therefore be supplemented with appropriate

algorithms to assess significance of the features selected. In this publication we apply

significance analysis to the spot-clusters of genes identified by the SOM method using

three alternative test statistics based either on FC-measures or on regularized Student’s

t-statistics with special emphasis on the error characteristics of microarray expression

data. Such local, cluster-related lists of genes are expected to improve the resolution of

the method to identify sample-specific features with a common functional impact.

The second focus of this publication addresses gene set enrichment analysis under

special consideration of the spot-clusters generated by SOM machine learning. It is

based on the fact that the importance of genes in terms of their relation to a par-

ticular molecular function is not necessarily associated with strongest or most sig-

nificant changes of expression provided by their rank in the obtained lists. Instead,

it can also involve weak but consistent alterations of transcript abundance. There-

fore gene set based methods have been developed to investigate phenotypic changes

at the level of biological function considering, for example, the involvement of genes

into signalling pathways, their relation to cellular components or their chromosome

location [7-13]. These methods essentially assess the enrichment of a set of several

genes in the list of differentially expressed genes compared with the total reservoir

of genes studied. The members of the set are defined a priori by some biological

commonality for certain phenotypes. The main advantage of such methods over sin-

gle gene based methods is that they directly link the ranked gene list with biological

knowledge and therefore provide better functional insight into the cause of the

phenotypic differences under study.

Our work thus aims at refining the avenues for feature mapping and data reduction

offered by SOM machine learning. We use the microarray expression data of a series of

67 different human tissues taken from ten tissue categories such as nervous, immune

system, epithelial and muscle tissues as an illustrative example to demonstrate the

strengths of the SOM method in disentangling large heterogeneous data sets.

The paper is organized as follows: In the Results-section we present and discuss our

approach of significance and enrichment analysis of SOM-transformed data if applied

to the tissue body-index data set. In the methodical part we provide details of the ap-

plied methods and algorithms and of relevant characteristics of microarray data. In the

additional material we address aspects of SOM data mining which supplement our

main results. Finally, we complemented our R-package ‘oposSOM’ [6] with appropriate

add-on functions enabling the differential expression and gene set enrichment analysis

of SOM-transformed microarray data.
Results
Mining SOM expression portraits - an overview

Figure 1 summarizes the main ingredients of our SOM analysis pipeline. Details of the

method and of the different analysis algorithms are provided in the Methods section
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Figure 1 Schematic overview about our SOM expression analysis pipeline.
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below and, partly, in our previous publication [6]. In short: SOM is a neuronal network al-

gorithm which transforms high-dimensional input data into ‘meta-data’ of lower di-

mension. Both data types are given as matrixes where the rows are the feature

values (expression levels of a number of genes/metagenes here) and the columns

are the samples measured typically under different conditions (see the first box in
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Figure 1). Each row-vector (called expression profile) thus characterizes the expression of

one gene/metagene in the series of samples whereas each column (called expression state)

characterizes the expression ‘landscape’ of all genes in one sample. As a rule of thumb,

the number of genes typically exceeds the number of metagenes by, at minimum, one

order of magnitude.

SOM machine learning iteratively adjusts the metadata (map space) to the input

data (data space) using the Euclidean distance as criterion after appropriate

initialization (see the second box in Figure 1). This training of the map ensures that

the obtained metagene profiles cover the diversity of expression profiles inherent in

the data. Finally, the input data are mapped to the metadata such that each meta-

gene profile serves as representative of a minicluster of single genes with similar ex-

pression profiles as indicated by lines connecting selected metagenes in the map

space with the associated single genes in the input space in the second box in

Figure 1.

Intuitive visualization is a third strength of the SOM method besides dimensionality

reduction and clustering (third box in Figure 1). Particularly, the metagene expression

of each sample is transformed into one image which ‘portrays’ its expression state in

terms of a color texture. It allows identifying clusters of co-regulated and over- or

underexpressed genes as red and blue spots, respectively. Spot summary maps provide

an overview of all spot clusters observed (see [6] for details).

Expression analysis then aims at extracting local (i.e. including genes selected into

one spot-cluster) and also global (including all genes studied) lists of differentially

expressed genes for each of the conditions studied (fourth box in Figure 1). Global lists

can be visualized in the SOM-map space using rank maps. Details of the gene-ranking

problem and of multiple test adjustment are addressed below using different signifi-

cance scores and false discovery estimates, respectively.

The second focus of this publication deals with the ‘function-mining’ problem using

gene set enrichment techniques (fifth box in Figure 1). Particularly we aim at extracting

information about the functional context of the genes clustered in a selected spot or, al-

ternatively, we map genes of common function (so-called gene sets) into the map space

of the SOM. The following pseudocode summarizes the machine learning steps and

downstream analyses:

# SOM Training & Mapping (see, e.g., [1] for detailed descriptions)

Input: input-data, SOM-size

Step 1: Initialization
eigenv1, eigenv2 ← CalculateEigenVectors( input-data )

for( x, y in 1. . . SOM-size x,y ):

{

coeffx ← 2 · ( (x-1) / (SOM-sizex -1) ) – 1

coeffy ← 2 · ( (y-1) / (SOM-sizey -1) ) − 1

meta-datax,y ← coeffx · eigenv1 + coeffy · eigenv2

}
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Step 2: Iterative training
for( i in 1. . .max-iterations ):

{

gene-profile ← SelectTrainingProfile( input-data )

BMU ← FindBestMatchingMetagene( meta-data, gene-profile )

learning-rate ← CalculateLearningRate( i, max-learning-rate,

max-iterations )

for( metagene-profile in meta-data ):

{

neighborhood-factor ← CalculateNeighborhoodFactor( BMU,

neighborhood-function, i )

metagene-profile ← metagene-profile + learning-rate

· neighborhood-factor ·

( gene-profile − metagene-profile )

}

}

Step 3: Final mapping
for( gene in input-data ):

{

gene-profile ← SelectGeneProfile( input-data, gene )

BMU ← FindBestMatchingMetagene( meta-data, gene-profile )

gene-to-metagene-mappinggene ← BMU

}

for( metagene in meta-data ):

{

for( gene in input-data ):

{

if( gene-to-metagene-mappinggene = metagene ): metagene-clustermetagene

← metagene-clustermetagene [ gene

}

}

Output: meta-data, gene-to-metagene-mapping, metagene-cluster
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# Visualization of the meta-data (see [6] for detailed descriptions)

Input: meta-data

Step 1: Generate sample portraits
for( expression-state in meta-data ):

{

CreateImage( expression-state, colorcode: minimum ← blue,

mean ← green, maximum ← maroon )

}

Step 2: Generate spot summary maps
for( metagene in meta-data ):

{

metagene-profile ← SelectGeneProfile( meta-data, metagene )

overexpression-summarymetagene ← GetMaximum( metagene-profile )

underexpression-summarymetagene ← GetMinimum( metagene-profile )

}

CreateImage( overexpression-summary, colorcode: minimum ← blue,

mean ← green, maximum ← maroon )

CreateImage( underexpression-summary, colorcode: minimum ← blue,

mean ← green, maximum ← maroon )
Output: Images: Sample expression portraits, spot summary maps ; Objects: overex-

pression-summary, underexpression-summary

# Spot detection and gene lists

Input: meta-data, overexpression-summary, underexpression-summary, expression-

threshold

Step 1: Sample portrait spot detection
for( sample in meta-data ):

{

expression-state ← SelectExpressionState( meta-data, sample )

spot-metagenes ← { metagenes | expression-state >

expression-threshold }

local-gene-listssample ← SplitSeparatedSpots( spot-metagenes )

}

Step 2: Summary map spot detection
spot-metagenes ← { metagenes | overexpression-summary >

expression-threshold }
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spot-gene-listsoverexpression ← SplitSeparatedSpots( spot-metagenes )

spot-metagenes ← { metagenes | underexpression-summary <

-expression-threshold }

spot-gene-listsunderexpression ← SplitSeparatedSpots( spot-metagenes )
Output: local-gene-lists, spot-gene-lists>

# Differential expression analysis:

Input: input-data, meta-data, local-gene-lists, spot-gene-lists, metagene-cluster

Step 1: Ranked gene lists
for( gene,sample in input-data ):

{

WADgene,sample ← CalculateWAD( input-data ) # see equation (1)

t-scoregene,sample ← CalculateTScore( input-data ) # see equation (2)

}

global-gene-listslogFC, WAD, t-score ← RankGenes( input-data, WAD, t-score )

local-gene-listslogFC, WAD, t-score ← RankGenes( local-gene-lists, input-data,

WAD, t-score )

spot-gene-listslogFC, WAD, t-score ← RankGenes( spot-gene-lists, input-data,

WAD, t-score )
Step 2: Rank maps
for( sample in meta-data ):

{

for( metagene in meta-data ):

{

logFC-mapmetagene ← GetAverage( global-gene-listlogFC,

metagene-clustermetagene )

WAD-mapmetagene ← GetAverage( global-gene-listWAD,

metagene-clustermetagene )

t-score-mapmetagene ← GetAverage( global-gene-listt-score,

metagene-clustermetagene )

}

CreateImage( logFC-map, colorcode: minimum ← blue, mean ← green,

maximum ← maroon )

CreateImage( WAD-map, colorcode: minimum ← blue, mean ← green,

maximum ← maroon )

CreateImage( t-score-map, colorcode: minimum ← blue, mean ←

green, maximum ← maroon )

}
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Output: Images: Sample rank maps ; Objects: global-gene-lists, local-gene-lists, spot-

gene-lists

# Gene set enrichment analyses:

Input: input-data, meta-data, local-gene-lists, spot-gene-lists, GO-gene-set-collection

Step 1: Spot-related and global gene set enrichment analysis
for( spot in spot-gene-lists ):

{

for( gene-set in GO-gene-set-collection ):
{

spot-HGspot,gene-set ← PerformHGtest( spot-gene-listsspot, gene-set )

# see equation (8)

}

}

for( sample,spot in local-gene-lists ):

{

for( gene-set in GO-gene-set-collection ):

{

local-GSZsample,spot,gene-set ← PerformGSZtest( input-datasample,

local-gene-listssample,spot, gene-set ) # see equation (10)

}

}

for( sample in global-gene-lists ):

{

for( gene-set in GO-gene-set-collection ):

{

global-GSZsample,gene-set ← PerformGSZtest( input-datasample,

gene-set ) # see equation (10)

}

}

Step 2: Gene set enrichment summary heatmap
for( sample,spot in local-gene-lists ):

{
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top-three-gene-setssample,spot ← GetTopRankedGeneSets

( local-GSZsample,spot )

}

top-three-gene-sets ← RemoveDuplicates( top-three-gene-sets )

CreateClusteringHeatmap( local-GSZtop-three-gene-sets, colorcode:

minimum←white, mean←yellow, maximum←red )
Step 3: Gene set enrichment profiles
for( gene-set in GO-gene-set-collection ):

{

CreateBarplot( global-GSZgene-set )

}

Step 4: Gene set enrichment maps
for( gene-set in GO-gene-set-collection ):

{

for( metagene in meta-data ):

{

metagene-HGmetagene,gene-set ← PerformHGtest

( metagene-clustermetagene , gene-set ) # see equation (8)

}

CreateImage( -log10( metagene-HGgene-set ), colorcode: minimum←blue,

mean←green, maximum←maroon )

}

Output: Images: GSZ summary heatmap, enrichment profiles & maps; Objects: spot-

HG, metagene-HG, local-GSZ, global-GSZ
SOM-portraits and rank maps

Genome-wide gene expression data of 67 selected tissues taken from 10 tissue categor-

ies were pre-processed and subsequently used to train a SOM as described in the meth-

odical part. Figure 2 shows the obtained SOM-portraits of selected tissues using a

60x60 mosaic grid. The method identifies coherent tissue-specific texture patterns of

gene expression readily discernable in the obtained gallery of SOM images. Particularly,

our SOM machine learning method partitions the more than twenty thousand ‘single’

genes probed by each microarray into 3600 miniclusters arranged in a two-dimensional

mosaic map. Each minicluster refers to one metagene. Its expression profile serves as

representative of the respective minicluster of co-regulated single genes. Their number

typically varies from tile to tile.



Adipose Tissue 
1 : adipose unspecified 2 : adipose omental 3 : adipose subcutaneous

Endocrine 
4 : adrenal gland 5 : pituatary gland 6 : pancreas 7 : thyroid gland

Homeostasis
8 : kidney cortex 9 : kidney medulla 10 : liver

Digestion
11 : colon 12 : small intestine 13 : stomach cardia 14 : stomach fundus

Exocrine 
16 : prostate 17 : salivary gland

Epithelium
18 : bronchus 19 : esophagus 21 : oral mucosa 23 : skin 24 : tongue

Sexual Reproduction 
27 : ovary 28 : testis

Muscle
29 : heart atrium 30 : heart ventricle 31 : deltoid muscle 32 : skeletal muscle 33 : myometrium

Immune System 
34 : B cells act. 36 : CD4+ T Cell act. 40 : bone marrow 41 : lymph node 42 : spleen 43 : thymus 44 : tonsil

Nervous System 
45 : accumbens 48 : cerebellum 49 : cerebral cortex 55 : hippocampus 56 : hypothalamus 58 : midbrain 67 : spinal cord

Figure 2 Gallery of SOM portraits of 42 selected tissues of different tissue categories such as
adipose, endocrine tissues. The colors of the respective headings are used below to assign the respective
tissue categories (e.g., in Figure 11 below).
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The color gradient of the map was chosen to visualize over- and underexpression of

the metagenes compared with the mean expression level in the pool of all tissues stu-

died. The obtained images visualize the specific expression pattern of each sample in

terms of a color-coded texture indicating regions of over- and underexpression by red

and blue spots, respectively. Most of the spots are tissue specific features which are

found only in one or a very few tissue categories such as nervous, immune system or

muscle tissues.

Note that the color textures of the individual portraits visualizes the ‘expression land-

scape’ of human tissues which is governed by different, partly tissue-specific expression
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modules of co-regulated genes evident as spots in the respective images. The observed

pattern is far from a random one: In the supplementary text (Additional file 1) we com-

pare properties of the textures observed in the tissue data with that of a randomized

expression landscape of equal size. The latter one is characterized by much more nu-

merous, SOM-size dependent and mutually independent expression modules when

compared with the tissue data.

Gene expression analysis aims at extracting lists of genes ranked with decreasing ‘im-

portance’ in the actual context. The ‘importance’ can be judged using different criteria

such as the log-expression difference with respect to a reference state or its significance

which takes into account in addition also the error level of the measurement. In the

next step we therefore map ranked lists of genes using the SOM-grid. Figure 3 shows

such SOM expression images of one particular tissue example, nucleus accumbens,

taken from the category of nervous tissues in log FC units (panel a) together with the re-

spective average-rank maps for three different expression scores described in the Methods

section (panels b-d), namely the FC-, weighted average difference (WAD)- and shrinkage

t-score, respectively (see (Eqs. (1) and (2) in the methodical part). The rankings of genes

refer to total gene lists which contain all genes studied. These maps color-code the mean
Figure 3 Expression image of nucleus accumbens (‘standard’ SOM profile, panel a) and the average-
rank maps for FC, WAD and shrinkage t-score statistic (b-d). The numberings of the tiles k=1. . .60 are
given at the vertical and horizontal borders of the SOM. White areas indicate empty metagenes.
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rank of each metagene which was calculated as the arithmetic average over the individual

rankings of the associated single genes in the total list. In general, genes on top of the list

accumulate in the red overexpression spot of the standard SOM-profile however with a

few exceptions, e.g. in the range of the green spot below the red one.

The three alternative scores provide very similar pattern, however with subtle differ-

ences: The contrast, i.e. the gradient between areas of under- and overexpression is lar-

gest for the WAD-ranking and smallest for FC-ranking with t-shrinkage in-between.

Similar trends are observed for the SOM expression profiles which are color-coded

according to the FC- and WAD-scores of their metagenes. Note also that the rank

maps reveal subtle details within the SOM-spots such as the chain-like cluster of

metagenes of small rank within the overexpression spot (compare panel a with b-d in

Figure 3). The analysis of such fine-structures might help to refine the subsequent

selection of relevant genes within the spots.

The examples shown in Figure 4 further support this result: The t-shrinkage rank-

map of small intestine, T-cells and lymph node show a partly better resolved fine struc-

ture of highly ranked genes in different regions of the map than the standard SOM

mosaics which use the log FC expression scale. On the other hand, the rank map of

colon is dominated by blue areas which reveal an average level of relatively low rank-

ings. This effect presumably reflects the relatively small expression level of the genes in

the overexpression spot in the top right corner of the map which give rise to relatively

large rank numbers. The whole atlas of the rank maps of all tissues studied is shown in

Additional file 2.
Global gene lists

The alternative scores generate ordered global lists of genes for each tissue with character-

istic differences between the methods as illustrated in the rank-map shown in Figure 3.
Figure 4 Comparison of standard SOM in log FC-scale (panel a) with rank maps based on global
gene lists according to the t-shrinkage statistics (panel b). Metagenes of high overexpression and of
small average rank of the associated single genes are coded in red. Both options show essentially similar
textures. The rank maps partly reveal more detailed spot pattern or a low overall rank level (blue, e.g.
colon). The atlas of rank maps of all tissues studied is shown in Additional file 2.
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The WAD-score, for example, strongly weights highly expressed genes which concentrate

in a few metagene-tiles in the top left corner of the map. As a consequence, these meta-

genes occupy smaller ranks in the WAD-list than in the respective FC- or shrinkage-t lists

with consequences for the textures of the respective rank maps. The present study does

not aim at comparing the performance of different expression scores in absolute units, an

objective which is problematic in the absence of a suited gold standard. Previous work

makes use either of synthetic simulation data, of correlation measures in real-world chip

applications or of special calibration data sets to judge the quality of different expression

scores [14-19]. It turned out that t-shrinkage and different FC-based scores such as the

WAD-score are generally suited measures to generate lists of regulated genes. Here we

apply the three scores as three complementary alternatives with a specific focus on differ-

ent expression properties: Particularly, WAD-lists heavily weight strongly expressed genes.

In consequence, subtle expression changes of weakly expressed genes potentially get lost

in WAD-lists. FC-lists directly rank the genes according to their differential expression

and thus represent a simple and intuitive measure related to the change of mRNA abun-

dance. FC-lists are however prone to generate false positives because the FC-score equally

weights strongly and weakly expressed genes with usually smaller and larger noise levels,

respectively. The t-shrinkage score explicitly considers the noise level of the genes which

however might raise problems due to the uncertainty of the error estimates as discussed

in the methodical section. Because of their specific advantages and disadvantages we con-

sider the different scores rather as complementary measures than as competitive ones

providing information which mutually supplement each other.

Figure 5a shows the p-value distribution of differential expression of nucleus accum-

bens based on the t-shrinkage score (the atlas of the p-value distributions of all tissues

studied is given in Additional file 3). It well separates into a constant noise floor and

the left-skewed subpopulation of differentially expressed genes constituting a percent-

age of about 66% of all genes available. We compare the global lists ranked with in-

creasing t-shrinkage, FC- and WAD-scores using four plots, namely (i) the rank

comparison (RC), (ii) the correspondence at the top (CAT)- ,(iii) the p-CAT and (iv)
Figure 5 Global significance analysis of accumbens sample: p-value distribution and fdr- and FDR-
curves of the t-shrinkage statistics (panel a) and comparison of gene rankings for FC-, WAD and
t-shrinkage scores using the RC-, CAT-, p- and Δp-CAT plots (panel b).
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the Δp-CAT plots (Figure 5b, see Methods section for description). The RC-plot com-

pares the individual positions on top of the lists by appropriate color-coding. It reveals

moderate disordering between the three lists where most ranks agree within ±20 posi-

tions up to rank r=50 (see green symbols). The CAT-plot presents the cumulative frac-

tion of common genes on top of the list for positions below a running threshold. In

our example it shows that best agreement is achieved in FC/WAD-comparisons for

ranks r ~ 10. . .100. However, also the other combinations provide acceptable agree-

ment between the lists with CAT(r)≥ 0.5 for positions r<100, meaning that at minimum

50% of the same genes are included in pairs of lists up to rank one hundred.

The p-CAT plot estimates the agreement between the lists in units of the cumulative

log p-value of the t-shrinkage statistics. It enables to differentiate whether a given CAT-

value refers to more similar or very different p-values and thus it estimates the import-

ance of rank differences. The respective Δp-CAT plot shows the difference between the

p-CAT value of the FC- or WAD-score and that of the t-shrinkage statistics which pro-

vides the lower margin per definition. The Δp-CAT values of the global lists of the FC-

and WAD-scores initially increase for ranks below 5-20 indicating that the different

rankings are associated with clearly different p-values. For positions r> 20 the Δp-CAT

values remain virtually constant indicating that the alternative lists provide consistent

results where rank differences reflect rather the noise inherent in the data than system-

atic biases between the scores used.

Local, spot-related gene lists

The spot-texture of the SOM portraits of individual tissues implies to generate spot-

related gene lists by taking into account only the single genes which are associated with

the metagenes forming a particular spot. Recall that a spot clusters genes of similar and

thus co-variant expression profiles in the series of samples studied. Our spot-based sig-

nificance analysis therefore shares similarity with methods which exploit the correlation

between genes in significance testing of differential expression [20,21] because it select-

ively applies to sub-ensembles of genes of highly correlated expression profiles.

In the next step we therefore analyzed the p-value distribution and the mutual list

characteristics for three selected spots referring to over- (spot I), under- (spot II) and

indifferent (spot III) expression (see Figure 6) which contain different numbers of single

genes (I: 980, II: 745, III: 1,947). Spots of regulated metagenes are detected for each tis-

sue using the 98% / 2% quantile criterion for over- / underexpressed metagenes, re-

spectively. The fraction of differentially expressed genes in the spots either markedly

exceeds (I,II: %DE=0.95) or falls below (III, %DE=0.53) the global value (%DE=0.66).

The ranking characteristics of the overexpression spot I closely resembles that of the

global lists indicating that this spot contains most of the ‘leading’ genes of the global list

(compare Figures 5 and 6). Note that the overexpression spot selects strongly differen-

tially expressed genes. Therefore the level of agreement between the alternative lists is

slightly better especially for FC/WAD-comparison (CAT(r<100) ~ 0.6) compared with

the respective comparisons between the global lists. Note that the spot-filtering effect-

ively combines the scoring of differential expression with the selection of co-expressed

and correlated genes. It has been previously shown that ‘correlation-sharing’ for the de-

tection of differentially expressed genes improves the performance of the analysis in

terms of the false discovery rate [20]. Effectively, the consideration of additional
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II
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Figure 6 Local significance analysis of selected spots of the accumbens sample (see part above):
p-value distribution and fdr- and FDR-curves of the t-shrinkage statistics (left part) and comparison
of gene rankings for FC-, WAD and t-shrinkage scores using the RC-, CAT-, p- and Δp-CAT plots
(right part).
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information about co-expression in other samples obviously removes false positives and

thus improves the lists of differentially expressed genes. For spot I we indeed obtain a

much smaller total cumulative FDR value of Fdr(p=1)≈0.05 (Figure 5a) compared with

the total list (Fdr(p=1)≈0.35; Figure 6).

Contrarily, the alternative gene lists taken from the underexpression spot II largely

diverge revealing the lack of agreement among the top 10 – 50 features. The CAT-plot

shows best agreement for FC/WAD-comparisons with CAT(r≈100)< 0.6 and worst for

FC/t-shrinkage (CAT(r≈100)<0.2). These rank comparisons are paralleled by relatively

large differences of the p-CAT and Δp-CAT characteristics revealing systematic and sig-

nificant rank differences due to the specific biases of the used scores. Particularly, FC/t-

shrinkage comparisons shows largest dissimilarity in the CAT- and p-CAT-plots for

r<50 followed by WAD/t-shrinkage comparisons. These discrepancies can be rationa-

lized by the large uncertainty of low expression genes which accumulate in the under-

expression spot.

Interestingly, also spot III contains a large fraction of differentially expressed genes

(%DE=0.53) despite the fact that the metagene expression is virtually on the moderate

level. The comparisons between the alternative lists provide less agreement when com-

pared with spot I but almost similar trends. The spot of ‘mean expression’ obviously

still contains residual amounts of significantly differently expressed genes which appear

as green and grey tiles in the region of spot III in the rank-map (Figure 3).

To generalize these results we calculated mean global and local CAT(r) and Δp-CAT(r)

values for lists of length r=10 and 100 of all tissue samples studied considering either all

genes or the genes of the strongest overexpression spot, respectively (see Additional file 1

for details). The results of these global and local rank comparisons confirm the trends dis-

cussed above: global FC- and WAD-lists of length r=10 – 100 agree to about 70% on the

average whereas global FC/t-shrinkage and WAD/t-shrinkage lists are identical to about

50%. Local lists are slightly more similar by a few percent than global ones due to the pre-

filtering of the genes in the SOM-spots. The respective Δp-CAT values reveal that the sig-

nificance level of the alternative scores is virtually identical for all considered lists.

In summary, the different scoring methods typically provide similar and virtually

equivalent gene lists for overexpression spots but diverging lists for underexpression

spots. The rank-maps of the respective methods clearly express these differences: The

regions of overexpression are essentially similar in the different rank-maps (see red

areas in Figure 3). Contrarily, the regions of underexpression largely differ in their tex-

ture. They appear either as relatively localized spots in the FC-rank and, to a less de-

gree, in the WAD-rank maps or they ‘smear’ over larger regions in the shrinkage-t

rank map due to the large uncertainty of low expression values.

In conclusion, overexpression rankings provide robust lists of differentially

expressed genes which are relatively independent of the scoring method used thus

allowing the quantitative analysis in terms of the obtained rank and expression level.

In contrast, underexpression lists are highly uncertain providing essentially qualitative

information, namely that the respective genes are weakly expressed. Discrimination

analysis between the different samples and especially GO-enrichment analysis to iden-

tify overrepresented gene sets should therefore focus on overexpression spots. The t-

shrinkage score will be applied as the default criterion for gene ranking in the remain-

der of this study.
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Global overrepresentation analysis

The correlation and co-expression of the gene profiles in each spot can be utilized as

a simple heuristic with implications for tentative gene function because biological

processes are governed by coordinated modules of interacting molecules [22]. Appli-

cation of gene set enrichment analysis to the series of about one dozen stable over-

and underexpression spots detected in the SOM of human tissues will make expli-

citly use of this ‘guilt-by-association’ principle which assumes that co-expressed

genes are likely to be functionally associated [22,23]. Enrichment analysis is expected

to assign putative gene function(s) to the selected spots. Below we compare several

options of enrichment analysis estimating either ‘overrepresentation’ of the members

of a priori functional gene sets in the spot list, their ‘overexpression’ in terms of dif-

ferences of the average expression levels in the set and the list and the combination

of both options.

Nine overexpression spots are identified in the SOM-images of all tissues studied

using the 98-percentile criterion of maximum expression. These spots are collected

into one, so-called overexpression summary map as described in [6]. Subsequently GO-

gene set overrepresentation analysis using the hypergeometric (HG-) test is applied to

the lists of genes contained in each of the overexpression spots (see the Methods sec-

tion below). Particularly, the genes associated with each spot are analyzed for overre-

presentation of genes taken from the collection of 1454 gene sets downloaded from the

GSEA-homepage according to the GO-categories molecular function, biological process

and cellular component. The HG-test then provides an ordered list of gene sets ranked

with decreasing significance of overrepresentation with respect to the random appear-

ance of genes from the set in each of the spots.

Figure 7a shows the overexpression summary map with the nine spots of strongly

overexpressed metagenes. The legend assigns the two leading overrepresented gene sets

in the list of each of the spots to get a first idea about the possible biological context of

the genes in the spots. For example, spot A in the top left corner of the SOM is clearly

related to molecular processes in nervous cells according to the two leading gene sets.

The more detailed inspection of the lists reveals that ten out of the top-twenty gene

sets of spot A are related to nervous system (see Additional file 1). Also other tissue-

specific spots can be associated with distinct molecular functions such as immune sys-

tem processes (immune systems samples, spot F), sexual reproduction (testis, spot E)

or muscle contraction (muscle tissues, spot B). Hence, the functional context of the dif-

ferent spots according to previous knowledge is clearly related to the tissues showing

the respective overexpression spot.

The analogous overrepresentation analysis was performed for the underexpression

spots related to local minima of the metagene expression profiles (Figure 7b). The func-

tional context of these spots thus refers to genes which are strongly underexpressed in

the tissues showing this spot (see also the respective spot expression heatmap shown in

Additional file 1). For example, spot b, c and g related to processes in the nucleus,

RNA processing and the extracellular region, respectively, are underexpressed in most

nervous tissues. Spot g and also spot f (related to neurogenesis) are underexpressed in

immune system tissues. The latter spot, in turn, shows clear overexpression in nervous

tissues, which is however not detected in the overexpression map selecting only the

regions of strongest overexpression.
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Figure 7 The over- and underexpression summary spot maps show nine spots each which are
strongly over-/underexpressed in different tissues (part a and b, respectively). Overrepresentation of
a collection of 1454 gene sets is estimated for each spot using the hypergeometric distribution. The right
legend assigns the two most significantly overrepresented gene sets to the respective spots.
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Thus, overrepresentation analysis of both, over- and underexpression spots provide

complementary information: On one hand, they allow to assign antagonistic gene acti-

vities in the same tissue and in different tissues. On the other hand, parts of the under-

expression spots occupy different regions of the map than the overexpression spots. In

consequence, combination of both maps extends the range of relevant gene sets and

thus also the functional context studied. For example, spots a and d related to biopoly-

mer metabolism and microtubules, respectively, are not detected in the overexpression

map. Spots e and f are both overexpressed in nervous tissues. They occupy regions near

the spot A also overexpressed in nervous tissues. The respective functional context of

all three different spots allows to disentangle subtle details of gene activity in nervous

tissues. A similar relation exists for overexpression spot F and underexpression spot b,
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where the former one overrepresents gene sets related to cell cycle and the latter one

gene sets related to nucleus activity.

Alternative spots selections

In the previous subsection we have shown that over- and underexpression spots partly

occupy different regions of the map with complementary information about their func-

tional context. One can apply also alternative methods of spot selection using hierarch-

ical clustering of the metagenes based on the Euclidean distance between them or

determining correlation cluster based on Pearson correlation coefficients between the

metagenes [6]. The former method provides an area-filling fragmentation of the map

into different spots which typically occupy larger areas than the spots from the over-/

underexpression summary maps. In the Additional file 1 we demonstrate that the

cluster-spots detect, for example, different groups of genes related to the functioning of

nervous tissues. The correlation clusters provide almost similar results however also

with subtle specifics of their functional context (Additional file 1). This method prefer-

entially selects areas of highly variable metagenes along the border of the map with

subtle differences between the functional context of adjacent clusters.

In summary, different spot selection algorithms and criteria fragment the expression

landscape of the map in partly different ways with complementary information about

the functional context of the associated genes. The suitability of the different methods

depends on the particular aims of the issues studied and is not in the focus of this

methodical publication. In the remainder of the paper we will use the overexpression

spots to extract further functional information from the maps. Note however that over-

and underexpression spot selection can be applied to the individual portraits of each

sample and thus they provide specific enrichment characteristics as described below. In

contrast, the k-means and the correlation clusters are based on the similarities between

the metagene profiles and thus they refer to all samples in terms of the global overre-

presentation of the associated genes. Application of the GSZ-score allows however to

study also sample-specific enrichment of the respective genes (see below).

HG-enrichment analysis

Gene set overrepresentation analysis as described in the previous subsection applies to

global spots of adjacent metagenes taken from the overexpression summary map. The

real genes associated with each spot are the same in all tissues studied because the

overexpression spot map summarizes the maximum size of each spot sizes observed in

any of the tissues and thus it neglects sample-specific alteration of the spot size. This

global approach applies to the whole series of tissue samples. It consequently lacks

sample-specificity. Thus, overrepresentation of a selected gene set is independent of the

individual expression level of the genes in the different samples. In the following we

present and discuss two approaches to take into account sample-specific gene expres-

sion. We will use the term gene set overexpression analysis if the mean expression of

the set-members is compared with the mean expression of all genes in the list without

considering the number of set members in the list in contrast to gene set overrepresen-

tation analysis which is based solely on the latter criterion. The term enrichment ana-

lysis will be used if both criteria, overrepresentation and overexpression, are combined

which enables the refinement of gene set analysis in terms of sample-specificity.
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The first option of HG-enrichment analysis simply substitutes the global spots by tis-

sue specific ones. These local spots are determined individually for each tissue-specific

SOM by applying the 98-percentile threshold. The size of one particular spot usually

varies from tissue to tissue and it can even disappear if the expression values of the re-

spective metagenes do not meet the threshold criterion as illustrated in Figure 8 for the

‘nervous tissue’-spot A. In consequence, the spot-related lists of single genes and the

derived list of overrepresented gene sets vary between the different samples. Subse-

quent application of overrepresentation analysis based on the HG-distribution (Eq. (8))

to these local spots provides tissue-specific p-values and thus one list of overrepre-

sented gene sets for each of the spots in each of the samples.

We selected the top-three gene sets per spot in each tissue and merged them into

one global list of most enriched gene sets in all spots. Finally, this global list was con-

verted into the HG-enrichment heatmap shown in Figure 9a. We applied hierarchical

clustering to group similarly expressed gene sets in vertical direction. It reveals five to

six gene sets associated with the ‘nervous tissue’-spot A in a tissue-specific fashion.

Other groups of enriched gene sets can be associated with immune systems tissues (F),

muscle tissues (B), epithelial (D) and homeostasis tissues (C1). The selected gene sets

are listed in Table 1. Please note that we chose the same capital letters as labels as were

used for the spot assignments discussed above for sake of comparison (see Figure 7a).

GSZ-enrichment analysis

HG-enrichment analysis applies a binary ‘included-or-not included’ criterion to assess

the positive membership of the genes from a gene set in a selected spot-cluster. The

gene set Z (GSZ)-score (Eq. (10), see the Methods section below) provides an alterna-

tive, second option for enrichment analysis which explicitly considers the individual ex-

pression values of the genes included in the list. The algorithm of GSZ-enrichment

analysis is largely identical with that of HG-enrichment analysis; namely it starts with

the tissue-specific identification of overexpression spots in the respective SOM-images

followed by the identification of spot- and tissue-specific lists of gene sets and their ag-

gregation into one global lists using the top-three gene sets from each individual list.

The only difference refers to the expression-dependent GSZ-score (Eq. (10)) which is

used instead of the expression-independent HG-score (Eq. (8)).

Figure 9b shows the GSZ-enrichment heatmap obtained from the aggregated list of

all relevant spots. The obtained number of 64 gene sets exceeds the 48 gene sets in the

HG-enrichment map in Figure 9a indicating the increased diversity of the GSZ ap-

proach. It can be adjusted by using stricter or more lax thresholds in the GSZ- and/or

HG-mappings for the number of selected top-gene sets per spot, respectively. Both

heatmaps reveal clusters of molecular characteristics which can be clearly assigned to

selected tissue types, e.g. nervous processes to nervous tissues (cluster A in Figure 9)

and muscle-related function to muscle tissues (cluster B). Table 1 lists the HG- and

GSZ-enriched gene sets associated with the main spots.

In Additional file 1 we further disentangle the obtained GSZ-lists for the three spots

selected in the bar plots in Figure 7b to illustrate the specifics of GSZ-enrichment ana-

lysis. Our standard algorithm applies the ‘top-three’ criterion, i.e. it selects the three top

gene sets of each local spot list and merges them into the global list of gene sets which

is further used to characterize the functional context of gene expression in the different
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Figure 8 Local spot characteristics of the ‘nervous’ spot A in different tissues. Panel a shows the original expression profile of selected tissues and panel b the selected overexpression spot
(s) by applying the 98% quantile criterion to the metagenes (red color). Note that the spot size (# of metagenes) and consequently also the number of associated genes with spot A (red circle)
changes from tissue to tissue affecting the results of enrichment analysis using either the HG- or the GSZ-scores: The top three gene sets are given for each of the examples.
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Figure 9 One-way hierarchical clustering heatmap of significantly enriched gene sets (rows) versus
tissues (columns) using the HG- (a) and the GSZ- (b) statistics. The three-top gen sets per overexpression
spot are selected in each of the maps. The heatmap color-codes the p-values of the respective score in log-
scale (see the legends in the figure). The tissue categories are color-coded in the bar above the heatmap. The
gene sets are clustered in vertical direction. The capital letters approximately assign clusters of enriched gene
sets in correspondence with the spots selected in Figure 7a. The GSZ-score provides a larger number of gene
sets (factor 1.8) and thus a more diverse pattern.
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tissues. This approach equally weights each spot in terms of the number of selected

gene sets and thus it ensures that each spot-feature is equally represented in the result-

ing global list. Alternatively one can generate a global list of gene sets ranked according

to their significance of enrichment in each of the tissues and cut this list using appro-

priate criteria. Results of this approach are presented in Additional file 1 and 6. The en-

richment lists are very similar compared with those obtained from the ‘top-three’

selection criterion.

In summary, HG- and GSZ-enrichment maps based on the ‘top-three’ selection cri-

terion provide an overview about the most important gene sets in the experimental

series studied. For the more detailed analysis we recommend using full lists of gene sets

for each spot which are provided as additional material in the spot-reports as described

below.

Overexpression maps and profiles of selected gene sets

In the previous subsections we applied ‘spot-centered’ gene set enrichment analysis to

extract the most relevant functional gene sets in each tissue sample. One can also pur-

sue a ‘gene set-centred’ approach and map the overrepresentation of one selected gene

set in each tissue-specific mosaic image. Particularly, we estimate the degree of overre-

presentation of this gene set in each metagene minicluster using the hypergeometric

(HG-) distribution. It provides an overrepresentation p-value for each metagene and

each gene set considered. Then the distribution of p-values is visualized in the same

two-dimensional mosaic which was used for the original expression images. Figure 10

shows overrepresentation maps of gene sets selected from each spot in Table 1. Overre-

presentation is observed in different regions of the map, for example in the top left and

bottom right corner for genes related to ‘synaptic transmission’ and to ‘immune system

process’, respectively. The examples also show that overrepresentation is either strongly

localized in one region of the map (e.g. for ‘striated muscle contraction’ or, to a less



Table 1 Molecular characteristics of selected overexpression spots as obtained by
HG- and GSZ-enrichment analysis a

Spot GSZ HG

A Synaptic Transmission Cell-Cell Signaling

Transmission of Nerve Impulse Neurological System Process

Central Nervous System Development Synaptic Transmission

Nervous System Development Transmission of Nerve Impulse

Regulation of Action Potential Nervous System Development

B Muscle Development Striated Muscle Contraction

Myoblast Differentiation System Process

Regulation of Muscle Contraction

Regulation of Heart Contraction

Striated Muscle Contraction

C1 Carboxylic Acid Metabolic Process Calcium Independent Cell-Cell Adhesion

Organic Acid Metabolic Process Excretion

Excretion Response to Steroid Hormone Stimulus

D Epidermis Development Tissue Development

Ectodermis Development Epidermis Development

Keratinocyte Differentiation Ectodermis Development

Epithelial Cell Differentiation

Morphogenesis of an Epithelium

F Regulation of Apoptosis Cellular Defense Response

T-Cell Activation Defense Response

Humoral Immune Resonse Immune System Process

Immune System Process Immune Response

Immune Response

Defense Response
a Gene sets enriched in both approaches are printed in bold letters.
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degree, for ‘synaptic transmission’ and ‘immune system process’) or it spreads over

wider areas of the SOM (e.g. for ‘transmission of nerve impulse’). Note that this overre-

presentation map applies to all samples studied owing to the fixed gene composition of

the metagene clusters.

One can also apply an orthogonal approach to characterize the ‘enrichment’ profile

of a selected gene set in all tissues studied. Our approach makes use of the full list of

genes and calculates the GSZ-score for the gene set of interest in all tissues. In this spe-

cial case the GSZ-score estimates overexpression in terms of the normalized difference

between the mean expression averaged either over the gene set of interest and over the

full list of genes (see Eq. (15)). The bar plots in Figure 11 show overexpression profiles of

the selected gene sets. The gene sets are strongly and consistently overexpressed in differ-

ent tissue categories. For example, the profiles of ‘synaptic transmission’ and ‘transmission

of nerve impulse’ are strongly overexpressed in nervous tissues and underexpressed in vir-

tually all non-nervous tissues. Contrarily, ‘immune system process’-genes show a more

heterogeneous expression pattern in the non-nervous tissues with ‘local’ over- (especially

in immune systems tissues) and underexpression characteristics while remaining strongly

underexpressed in the nervous tissues. Genes related to muscle contraction are naturally

overexpressed in muscle tissues but also in tongue which also contains muscle tissue.



TRANSMISSION NERVE IMPULSE(b) STRIATED MUSCLE CONTRACTION(c)SYNAPTIC TRANSMISSION(a)

EPIDERMIS DEVELOPMENT IMMUNE SYSTEM PROCESSEXCRETION(d) (e) (f)

Figure 10 Overrepresentation maps of six selected gene sets containing between Nset= 157 and
472 genes. Overrepresentation in each tile of the mosaic is calculated in units of log(pHG) using the
hypergeometric distribution and color-coded (significance: maroon>red>yellow>green>blue). White areas
indicate metagenes not containing genes from the respective set). Strongest overrepresentation of the
different gene sets is found in different regions of the SOM (see red circles). Overrepresentation can be
concentrated within one or a few adjacent metagenes (e.g. muscle contraction, panel c) or spread over
different disjunct regions of the map (immune system, panel f).
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Note also that the gene set ‘epidermis development’ is overexpressed in epidermal tissues

and in tonsil assigned to tissues of the immune system.

The curve plots inserted in all panels of Figure 11 show the expression profiles

of the topmost three enriched metagenes containing the respective gene set. Most

of these metagene expression profiles are very similar compared with the respective

GSZ-overexpression profiles. Hence, representative profiles of the selected metagene

miniclusters of co-regulated real genes well agree with the expression profiles of function-

ally related sets of genes which have been collected independently. This result supports

the ‘guilt-by-association’ principle which states that coexpressed genes are likely to be

functionally associated because biological processes are governed by coordinated modules

of interacting molecules [22].

The ‘guilt-by-association’ principle, in turn, implies the ability to define either new

gene sets using selected metagene-miniclusters or to verify and/or to amend existing

ones. Such verification can address the distribution of the single genes of a selected

gene set over different regions of the SOM (see, e.g. Figure 10) to prove their set mem-

bership by independent methods. On the other hand, spot-members not assigned to

any gene set constitute potential new candidates for those gene sets which are highly

enriched in the respective spot. For example, the tissue specific spots A (nervous system

tissues), B (muscle tissues) and F (immune system tissues) contain about 30% - 40% genes

which are not assigned to any of the gene sets tested and about 50% genes which are mem-

bers of gene sets not listed at the top of the list (details are given in Additional file 1). These

genes constitute potential candidates for further verification of their functional context.



Figure 11 Overexpression profiles of selected gene sets (bar plots, compare with Figure 10). The
bars are colored in accordance to the color-codes of the different tissue categories. They are scaled in units
of the GSZ-score (left axis). The horizontal dotted lines mark the fdr=0.2 significance threshold estimated
from the p-value distribution of the GSZ-score. The inserted curves show the log FC-expression profiles of
the top-three metagenes of strongest enrichment of the respective gene set.
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Based on our spot analysis we define tissue-specific gene sets from spots that are

clearly assigned to selected tissue categories. The single genes of each spot are filtered

using a correlation threshold for mutual correlations between the single gene and meta-

gene profiles: Only genes are considered with Pearson correlation coefficient larger

than 0.8. The defined gene sets are available in Additional file 4.

Zoom-in analysis

We applied so-called‚ zoom-in‘ SOM analysis to study the expression profiles of sub-

groups of samples such as nervous and immune system tissues with enlarged resolution

as described previously [6]. The zoom-in maps were trained using reduced sets of tissue

samples but the same number of tiles of the SOM-mosaic. They show ‘new’ textures of

characteristic over- and underexpression spots which reflect the expression profiles of

the tissues of interest more in detail than the original SOM. In the supplementary ma-

terial (Additional file 1) we present the results of global overrepresentation and of local

GSZ-enrichment analysis applied to the respective subgroups of tissues. The zoom-in

analysis of nervous tissues, for example, provides clusters of genes related to signal

transduction and replication which are not clearly detected in the original maps. Both

approaches, global overrepresentation and local GSZ-enrichment analysis, provide con-

sistent results. In the additional material we provide also overrepresentation maps and

overexpression profiles of the same gene sets shown in Figures 10 and 11, respectively,

to illustrate re-distribution of gene sets after zoom-in.

SOM-mapping of strongly expressed, absent and housekeeping genes

The gene sets studied in the previous subsections are chosen from GO-categories. They

are subsequently processed to estimate their enrichment in overexpressed spot-clusters
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of co-regulated genes taken from the SOM mosaics. Gene sets can also be collected by

applying alternative criteria such as the consistent high or weak expression of the

selected genes in all samples. The population mapping of these sets into the SOM mo-

saic then specifies the activity of the respective genes in different areas of the map.

Gene function of these sets can be specified using GO-overrepresentation analysis as

described above. However, such global expression criteria itself lend to define groups of

genes related to specific functions such as housekeeping gene activity. Housekeeping

genes are thought to be by nature significantly expressed in all somatic cells under all

circumstances because their gene products are required for the maintenance of basal

cellular function (see, e.g., [24,25] and references cited therein). In addition to house-

keepers we select special sets of highly expressed (using differential expression and

ranking criteria) and of absent (i.e. consistently not or weakly expressed genes) to ob-

tain information about additional aspects of genome-wide transcriptional activity which

complements the functional analysis of tissue-specific overexpressed and co-regulated

gene sets discussed above (see Table 2 for an overview; the genes of these sets are given

in Additional file 5).

We analyze the SOM population patterns, the tissue-wide overexpression profiles and

also GO-set overrepresentation of these special gene sets. Figures 12 and 13 show the

population maps of these gene sets and their GSZ-overexpression profiles, respectively.

Highly expressed genes were selected by taking the top-10% genes either from the global

overexpression list (panel a) or from the global rank product list (b, see Additional file 1

for details and also [26]). These criteria select genes either from a larger number of over-

expression spots (e.g. spots A, C, D, H; compare Figure 7 and Figure 12a and b) or from

only a few ones (Figure 12b). Note that only about one fourth of the genes in each of the

sets are commonly found in both sets due to the different criteria which select either max-

imum expressed genes or consistently top ranked genes. The overexpression profiles in

Figure 13 (panel a and b) reveal that the rank criterion (b) more strongly weights highly

expressed genes from nervous tissues than the alternative high expression criterion (a).

On top of the HG-overrepresentation lists one finds gene sets related to homeostasis for

high expression (a) and to morphogenesis and cell migration for consistently highly

ranked genes (b) (see Table 2). Note that the ranking criterion weights the effect of tissues

according to the number of samples of the respective tissue category. The relatively large

number of nervous tissues obviously biases the particular genes selected using the ranking

criterion towards genes involved in nervous function.

The expression of ‘absent’ genes per definition falls below the detection threshold for

specifically hybridized probes in the microarray measurement. One can detect the re-

spective genes using two different but closely related criteria (see rows c and d in Table 2).

The first one extracts these genes directly after single-array intensity calibration using the

hook method [27,28] whereas the second one is based on the present-call parameter of

each gene which was obtained after applying background correction and chip-to-chip

normalization to all arrays of the series (see the methods section in [6] for details). The

latter criterion selects about twice as much genes as the former one with only moderate

overlap between both groups (Table 2 and Figure 12). Both criteria however provide very

similar characteristics of absent and weakly expressed genes despite these differences (see

panels c and d in Figures 12 and 13): the genes selected strongly accumulate within one

localized area near the centre of the SOM which has been assigned to virtually invariant



Table 2 Special gene sets

Gene set a Selection criterion # of
genes

Top three overrepresented GO-sets b

a Highly expressed Top ranked expression in the
global overexpression list

2,227
(10%)

Cation homeostasis, chemical homeostasis,
multicellular organism development

b Highly ranked Top ranked in the global rank
product list c

2,227
(10%)

Anatomical structure morphogenesis,
axiogenesis, cell migration

c Inactive (consistently
not or weakly
expressed)

Member of the N-range of
the hook curve, absent in all
tissues

688 Receptor activity, signal transduction,
plasma membrane

d Present call parameter pc = 0
in all tissues

1,156 Receptor-protein signaling pathway,
neurological system process, signal
transduction

e Housekeepers
(consistently expressed)

Not member of the N-range
of the hook curve, present in
all tissues

3,561 Anti-apoptosis, apoptosis, cell development,
RNA processing, DNA/RNA binding, DNA
metabolic process, metabolic process,
transcription, translation d. . . .

f Present call parameter pc = 1
in all tissues

3,167 see e

g Top ranked in mean expression
list averaged over all tissues

2,227
(10%)

Macromolecular complex assembly,
nucleic acid metabolic process,
regulation of cellular metabolic process

h Taken from ref. [31], criterion
analogous to g

852 Cellular macromolecule metabolic
process, cellular protein metabolic
process, protein metabolic process

a gene lists are given in Additional file 5.
b HG-enrichment, lists are given in Additional file 5.
c details are given in Additional file 1.
d about 150 gene sets (see Additional file 5 and Table 2).
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genes. The GSZ-profiles support this result: They show relatively constant profiles for

these sets which contain enriched populations from GO-sets related to receptor activity

and signal transduction (Table 2).

The criteria e and f (Table 2) essentially invert the previous selection of absent genes.

They select genes which are significantly expressed in all tissues studied. These genes

widely distribute over different regions of the SOM mosaics forming several highly popu-

lated ‘hot spots’ (see panel e and f in Figure 12). Spots of high tissue specificity are virtually

not selected by these criteria as expected (compare with Figure 7). Interestingly, these con-

sistently present genes are overexpressed in immune system tissues and underexpressed in

nervous tissues, a pattern which basically inverts the respective profiles of the highly

expressed genes in these two tissue categories (compare e and f with a and b in Figure 13).

Criteria e and f essentially meet the conditions for housekeeping genes (see above).

We applied an alternative criterion which chooses 10% of the genes of highest mean

expression log-averaged over all tissues. Most of the genes selected are common mem-

bers also in the sets e and f. These three sets consequently possess very similar character-

istics (see Figures 12 and 13). For comparison we included a list of housekeepers taken

from a previous microarray study [24]. The respective selection condition essentially

agrees with our criterion d. However it was applied to an alternative tissue data set which

was studied using a previous generation of HGU95a- GeneChip arrays [29,30]. We reana-

lyzed this data set and found that it contains a much higher fraction of absent genes in

most of the tissues (data not shown). This difference presumably explains the relatively

small number of housekeepers detected in this data set. Despite this difference it reveals a

similar overexpression profile compared with our alternative sets.
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Figure 12 Population maps of special gene sets: Genes of highest expression (top 10%)
preferentially accumulate in a few metagenes in spots A – F (spots are assigned in agreement with
Figure 10) whereas the consistently absent genes (~3-5% of all genes) are found in the area of
minimum variability (see variability map in [6]). Housekeeping genes selected as consistently present in
all tissues (not-absent, ~15% of all genes) and as the top 10% most stable expressed genes are compared
with the set of housekeeping genes taken from ref. [31]. The gene sets enriched in selected highly
populated spots (h1 – h11) are given in Table 2. The Venn diagrams show the overlap between different
gene sets as illustrated.

Wirth et al. BioData Mining 2012, 5:18 Page 29 of 45
http://www.biodatamining.org/content/5/1/18



Figure 13 GSZ-overexpression profiles of the special gene sets defined in Table 1.
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HG-overrepresentation analysis of the housekeepers provides functional gene sets

related to basal cell activity such as ‘metabolic process’, ‘transcription’, ‘translation’ and

‘RNA processing’. Note that the housekeepers distribute over several separated spot-

like areas in the SOM mosaic which partly contain enriched fractions of the same gene

sets such as ‘cytoplasm’ found on top of gene set lists in the spots h1-3, 5, 11 (see

Table 3). Other gene sets accumulate in single or only a few spots only, for example

‘nucleus’ in h3, h9 and h10; ‘mitochondrion’ in h4 and ‘lipid binding’ in h5. The SOM

approach thus enables to further disentangle larger groups of genes such as house-

keepers into subgroups of more specific function. For example, housekeepers related to

nucleic acid processing accumulate in spots h7, h9 and h10 whereas genes related to

actin functioning in h2. Note also that the spots of housekeepers discussed are still

located in regions of relatively highly variable and thus specific metagene profiles.

In conclusion, global expression criteria represent an alternative option for selecting

metagenes and spots of metagenes with functional impact. These criteria complement

the overexpression criteria discussed above. Note for completeness that both options

can be combined, for example, to mask absent genes in the overexpression SOM to ex-

clude noisy and thus presumably irrelevant genes.

Reports

Our SOM approach enables views from different perspectives on large sets of high dimen-

sional data. They include overview characteristics which address similarity relations be-

tween different samples and the detailed description of the expression pattern in each of

the samples studied as well. Moreover, differential expression analysis identifies ordered



Table 3 GO-overrepresented gene sets in SOM-spots of highly populated housekeeping
metagenes

Spota # of
genes

Top overrepresented gene sets

h1 333 Cytoplasm, enzyme regulator activity, vesicle mediated transport, establishment of localization

h2 74 Cytoplasm, oxidoreductase activity, actin binding, endoplasmic reticulum, cytosol

h3 418 Cytoplasm, macromolecular complex, nucleus, protein metabolic process, protein complex

h4 89 Oxidoreductase activity, cytoplasm, mitochondrion, envelope, organelle

h5 91 Cytoplasm, Golgi apparatus, cofactor catabolic process, lipid binding, microsome

h6 101 Protein complex, macromolecular complex, cytoplasm, protein catabolic process

h7 775 Biopolymer metabolic process, biosynthetic process, nucleic acid, RNA processing

h8 50 Protein metabolic process, endosome, cellular metabolic process, phosphatase activity

h9 176 Nucleus, biopolymer metabolic process, nucleic acid / RNA metabolic process

h10 253 Biopolymer metabolic process, mRNA metabolic process, RNA processing, nucleus

h11 118 Cytoplasm, proteasome complex, cellular protein metabolic process, protein metabolic process
a spots are defined in Figure 12e.
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lists of over- and underexpressed genes taken either from the full ensemble of all genes

available or from subensembles selected from metagene clusters of co-regulated genes. In-

formation about the functional context is extracted by applying enrichment analysis to

the different gene lists.

We designed a set of standard PDF-reports which allows the systematic browsing in

the full set of results. Details are given in the supporting text (Additional file 1). The

whole report is organized into several main topics each of them contains a series of

documents. The reports of this tissue-study can be downloaded from our website

(http://som.izbi.uni-leipzig.de).

Summary and conclusions
SOM machine learning transforms large and heterogeneous sets of expression data into

mosaic images which visualize sample-specific over- and underexpression in terms of char-

acteristic textures. This view is very intuitive to identify modules of correlated and differen-

tially expressed genes in terms of well defined colored spots. SOM analysis basically

rearranges and condenses the primary information of gene expression without filtering. It

thus preserves the whole information content of the original data set despite the dimension

reduction used to visualize the most essential expression profiles inherent in the data.

This primary information together with the respective gene annotations is further

processed in differential expression analysis using three alternative scores which place

emphasis either exclusively on the fold change of gene expression or, in addition, on

the precision of the measurement.

SOM analysis provides special advantage to generate local lists of genes taken from

selected spots of the map. Thus, the impact of differential expression can be studied not

only in a sample-specific fashion but also for selected subgroups of co-regulated genes.

The alternative scores studied provide slightly different but mostly consistent rankings for

lists containing up to a few dozen genes. The FC-, WAD- and shrinkage t-scores tested

are rather complementary measures than competitive ones providing information which

mutually supplements each other with specific advantages and disadvantages.

http://som.izbi.uni-leipzig.de
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To extract the functional context of spot- and metagene-related lists of single genes we

applied overrepresentation- and overexpression analysis, and a combination of both with

respect to pre-defined gene sets of known functional impact. Overrepresentation analysis

combines the criterion membership in a gene set with that of co-(i.e. correlated-) expres-

sion in a series of samples whereas overexpression analysis compares the mean expression

of genes from the set with that of all genes. The mapping of overrepresentation of a

selected gene set into the SOM mosaic provides a ‘functional’ map showing areas which

are potentially relevant in this context. Alternatively, one can screen the degree of overre-

presentation of a large number of gene sets in a selected metagene spot to discover its po-

tential function. Both complementary views provide a link between the tiles and/or spots

of the SOM mosaic and their potential molecular function.

Overexpression analysis of a selected gene set, on the other hand, profiles a selected

molecular function across the different samples studied, for example, to identify tissues

with highly active or inactive genes from the set of interest. The gene set enrichment

approach was applied to discover the functional context of the metagene overexpres-

sion spots in a sample specific fashion by estimating significance using either the hyper-

geometric statistics or the gene set enrichment Z-score with similar results in both

cases. GSZ-enrichment however tends to select more diverse lists of gene sets because

it explicitly takes into account the expression profile of the associated genes. The use of

multiple options of ranking scores for differential expression and for gene set functional

analysis enable to test the robustness of single gene and gene set rankings with poten-

tial consequences for their biological interpretation.

The tissue related spots of the SOM typically contain enriched populations of gene sets

corresponding to known molecular processes in the respective tissues in the actual case

study. SOM spot-clustering implies the ability to define either new gene sets using

selected SOM spots or to verify and/or to refine existing ones. In addition to overexpres-

sion criteria for selecting SOM spots (given in units of expression differences) we study

absolute ones (given in units of expression values) which allow identification of alternative

sets of housekeeping genes and of consistently-high or -low expressed genes.

The present paper thus extends our previous study and adapts these methods for

feature selection and for mining the functional context to the SOM-data. Beyond

these methodical issues our case study provides insights into tissue specificity of gene

expression. For example, genes involved into nervous function show an antagonistic

expression patterns with high expression in nervous tissues and low expression in

nearly all non-nervous tissues studied. In contrast, genes related to immune system

response are specifically upregulated not only in immune system tissues but also in

other tissues (e.g. adipose and digestion) thus reflecting commonly activated immune

processes. Also specific combinations of different gene functions can be easily

detected by our methods such as the combined activation of genes related to immune

response and to epidermis development in tonsils. Using our spot-selection method

we provide a series of tissue specific gene sets which can be applied, for example, to

study tissue-specific factors in different diseases. In addition to the detailed profiling

of functional gene sets in human tissues our SOM-analysis enables diversification of

general categories of genes such as highly expressed and permanently expressed ones.

Highest expression levels are observed in epithelial, digestion, exocrine and partly

muscle tissues. Permanently expressed ‘housekeepers’ can be split into different
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subgroups related, e.g., to protein metabolism, mitochondrial or transcriptional activ-

ity due to tissue-specific modulation of their expression levels.

Application of SOM-based analysis to the full set of 67 tissues thus provides the com-

prehensive and detailed characterization of the transcriptome of human tissues as seen

by GeneChip microarrays. Our study produced an extensive collection of results which

are provided as supplementary reports to illustrate the potency of the method and also

as data base for further studies in the context of gene regulation in different tissues and

its dysfunction. The methods of differential gene expression and enrichment analysis

are implemented in the R-program ‘oposSOM’ available as CRAN package.
Data and methods
Microarray data and SOM-cartography

The raw microarray data and their primary and secondary analysis in terms of calibration,

normalization and SOM-cartography was described in [6]. In short: Gene expression pro-

files were downloaded from Gene Expression Omnibus under accession number GSE7307

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307). The data set consists of

677 human tissue samples measured with the Affymetrix HG-U133 plus 2.0 array. We

selected 187 of these samples derived from 67 different tissues for further analysis.

Microarray intensities were transformed into expression values, Eg,m,r, using hook

calibration [27,28] and quantile normalization. The indices assign the gene (g =

1. . .N), the tissue (m = 1. . .M) and the replicate (r = 1. . .Rm) where the number of

replicates can vary between the tissues. The logged expression values of each gene,

eg;m;r ¼ log10Eg;m;r , are averaged over the replicates, eg;m ≡ er;g;m
� �

r (angular brackets

denote arithmetic averaging), and transformed into differential expression values,

Δeg;m ≡ eg;m � eg , with respect to the mean expression of each gene averaged over all

tissues studied, eg ≡ eg;m
� �

m.

Subsequently self organizing maps (SOM) machine learning was applied to all differential

expression data. The algorithm initializes K weight vectors of dimensionality M given by

the number of conditions studied. The elements of the weight vectors can be interpreted

as expression profiles of prototypic genes which are called metagenes in our application.

The metagenes are arranged in a rectangular grid (K = 60 × 60 tiles) and initialized

using linear initialization [31,32]. Here, the metagene profiles are determined along the

linear subspace spanned by the two eigenvectors with largest eigenvalues of the input

data. This approach is similar to principal component analysis (PCA), attempting to

cover the greatest variability of the data. Due to linear scale used, adjacent metagene

profiles in the grid are more similar than more distant ones and the most distant meta-

genes roughly cover the whole range of input data. Linear initialization is effective be-

cause it reduces the number of required iterations required for training (see below)

compared, e.g. with random initialization. It largely avoids topological defects and it is

deterministic, i.e., repeated training runs of the same data with slightly varied grid

dimensions provide reproducible and comparable results.

After initialization the SOM is trained using an iterative algorithm. In each iterative step

a gene is picked from the gene list and its vector of differential expression Δeg;m is com-

pared with the metagene profiles using the Euclidean distance as similarity measure. The

metagene profile of closest similarity is then modified, so that it more closely resembles

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
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the expression profile of the selected gene. In addition, the neighboring metagene vectors

in the two-dimensional grid closest to this metagene are also modified, so that they also

resemble the gene's expression vector a little more closely. This process is applied to all

genes and repeated about 250,000 times. The radius of considered neighbors is decreased

with progressive iteration which modifies fewer metagene vectors by smaller amounts, so

that the metagene vectors asymptotically settle down. The resulting map becomes orga-

nized because the similarity of neighboring metagenes decreases with increasing distance

in the map. Finally each gene is associated to its best matching metagene, building up

miniclusters of similar gene profiles each represented by the metagene profile.

In the final SOM each ‘single’ gene is assigned to the metagene vector of closest simi-

larity. It consists of regions of similar metagene profiles each of them represents a

minicluster of single genes with correlated expression profiles. High-variable metagene

profiles arrange near the edges of the map about a central region of less variable meta-

genes. In the next step, the SOM is ‘stained’ using an appropriate color code: Particu-

larly, each sample studied provides one SOM-image which ‘portrays’ its expression

landscape. Each tile of the mosaic is colored according the value of the respective meta-

gene in the sample chosen. The distance similarity metrics and the training algorithm

used gives rise to characteristic sample-specific spot patterns where each spot includes

several adjacent metagenes. Sample-specific over- and underexpression spots are

selected among all metagenes using a 98% and 2% quantile criterion, respectively.
Differential expression scores

A large multitude of various methods have been developed in the last decade to assess

statistical significance of differential expression in microarray data analysis (see, e.g.,

the overview given in [33] and the references cited therein). Most statistical methods

aim at generating ranked lists of single genes which are differentially expressed accord-

ing to a certain level of significance. Microarray data are very noisy and prone to sys-

tematic errors [34-39]. The proper estimation of the level of precision constitutes

therefore one basal problem in significance analysis, especially if only a few replicates

are available. Another problem is raised by the highly multivariate character of the data

which requires suited concepts to control significance in multiple testing.

In this study we estimated differential expression of individual genes using three al-

ternative scores:

1. The fold change (FC) simply estimates the expression change in logarithmic scale,

log logFCg;m ≡Δeg;m.

2. The weighted average difference (WAD)-score,

WADg;m ¼ wg;m :Δeg;m with wg;m ¼ Δeg;m � min Δeg;m
� �

max Δeg;m
� �� min Δeg;m

� � ð1Þ

is a fold-change based measure well performing in differential expression analysis

[14,15]. The main idea behind the WAD method assumes that relevant marker

genes tend to have high expression levels, i.e. ‘strong signals are better signals’ in

the gene ranking problem [16,34,40]. This assumption accounts for the fact that



Wirth et al. BioData Mining 2012, 5:18 Page 35 of 45
http://www.biodatamining.org/content/5/1/18
the experimental error of expression values inflates at small expression levels in

logarithmic scale [41-43]. Note that the weighting factor in Eq. (1) can be

expressed as a function of the absolute expression values as in the original paper of

Kadota et al. [14], wg;m ¼ eg;m � min eg;m
� �� �

= max eg;m
� �� min eg;m

� �� �
, showing

that the weighting factor linearly scales with the expression level of the gene.

3. The shrinkage t-score,

tg;m ¼ Δeg;m

SEdiff
g;m

with SEdiff
g;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ shr
g;m

� �2
Rm

þ
σshrg;m

� �2	 

mXM

m�1

Rm

vuuuuuut ≈
σshrg;mffiffiffiffiffiffi
Rm

p ð2Þ

accounts for the standard error of the expression values of each gene in replicated mea-

surements. Our shrinkage statistics was defined in Eq. (2) in analogy with previous

approaches [44-46]. Here SEg,m
diff denotes the standard error of differential expression of

gene g measured under condition m. To estimate the standard error in Eq. (2) we first

calculate the standard deviation of the log-expression values using the available repli-

cates, σg;m≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

er;g;m � eg;m
� �2D E

r

r
. These values are then plotted for each sample as a

function of the logged expression degree, eg,m, and locally pooled over a moving win-

dow of a few hundred neighboring values. The obtained locally pooled error (LPE) esti-

mates the mean standard deviation as a function of the expression, σLPE eg;m
� �

. It is

combined with the individual standard deviation for each gene to provide the shrinkage

error estimate used in Eq. (2)

σshrg;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ⋅ σg;m2 þ 1� λð Þ ⋅ σLPE eg;m

� �2q
ð3Þ

The parameter λ (0 ≤ λ ≤ 1) scales the degree of shrinking σg;m towards σLPE .

The shrinkage t-statistics was developed in the framework of James-Stein analytic

shrinkage and applied in different modifications in gene expression analysis (see [44]

and references cited therein). The basic idea behind Eq. (3) assumes that the error esti-

mate based on σg,m alone might be very imprecise, e.g. if only a few replicates are avail-

able. The resulting large ‘error of the error’ leads to highly uncertain naive t-scores

associated with large false positives rates (see Eqs. (2) and (3) with λ = 1).

It has been suggested previously that estimates of the variance from individual genes

is questionable [25,38,46-49]. Yet accurately estimating variability of gene expression is

essential for correctly identifying differentially expressed genes. Additional information

may be gained by combining variance estimates across all or part of the experiment.

Such information borrowing methods that exploit this information are able to improve

the results [16,48,50]. Particularly, local-pooled-error estimates for evaluating signifi-

cance of each gene’s differential expression have been shown to effectively identify sig-

nificant differential expression patterns with a small number of replicated arrays [50].

To get more precise error estimates, the shrinkage t-score makes therefore use of the

fact that the variability of microarray expression values is governed by methodical
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factors which allow to express the measurement error as a function of the expression

level [43,51]. This error can be estimated with high precision using the LPE averaging

approach. Finally, Eq. (3) combines the pooled and the gene-specific error to take into

account both, individual and common factors. Shrinkage t-scores consistently lead to

accurate gene rankings which might outperform simple t-statistics or FC-scores [44].

In the supplementary text (Additional file 1) we address details of the error character-

istics of the different tissue samples studied in terms of their LPE-functions and mean

LPE-values. It is shown that the error level depends on the tissue type. For example,

adipose tissues and tissues related to digestion show nearly twice as large gene-related

error levels than tissues of sexual reproduction, of exocrine function and partly of

homeostasis.

Significance analysis

The shrinkage t-statistics (Eq. (2)) transforms into p-values characterizing the signifi-

cance of differential expression for each gene assuming Student’s t-distribution. The

obtained density distribution for the p-values of all genes in one selected tissue, ρ(p),

meets the normalization condition
Z 1

0
ρ pð Þ ⋅ dp ¼ 1 . Examples for selected tissues of

different mean error level are shown in Additional file 1. Under the null hypothesis one

expects a uniform distribution, ρ0(p) = 1, whereas the alternative hypothesis will produce

a skewed distribution, ρDE(p), decaying with increasing p because differentially expressed

genes tend to cluster closer to p = 0 [52]. In the general case, the observed distribution

can be interpreted as the superposition of two components due to differentially and not-

differentially expressed genes, ρ pð Þ ¼ ρDE pð Þ 1� η0
� �þ ρ0 pð Þη0 , where η0 is the fraction

of non-informative ‘null’-genes among all genes considered [52,53]. It was derived using

the “fdrtool” R-package [54] under the assumption of vanishing differential expression at

p = 1, ρDE(1) = 0, giving rise to ρ 1ð Þ ¼ η0 [55]. “fdrtool” was further used to calculate false

discovery rates (FDR) to control the number of false discoveries:

fdr pð Þ ¼ η0
ρ pð Þ and Fdr pð Þ ¼ η0 ⋅ pZ p

0
ρ pð Þ ⋅ dp

ð4Þ

Here fdr and FDR denote the local and tail area-based FDR estimates, respectively.
The latter Fdr(p)-values provide a cumulative estimate of FDR referring to all genes on

top of a list with p-values p’ ≤ p whereas fdr(p) estimates the FDR of a selected gene with

p’ = p [56]. For a monotonically decaying total density ρ(p) both, fdr(p) and Fdr(p), are

increasing functions which well correlate in the intermediate p range. The local

FDR-estimate however systematically exceeds the tail-based one, fdr(p) ≥ Fdr(p), at inter-
mediate and large values of argument (see the examples shown in Additional file 1). Their

limiting values at p = 0 and 1 are given by the equations Fdr(0) = fdr(0), Fdr(1) = η0 and

fdr(1) = 1, respectively.

The total fraction of differentially expressed and thus informative genes per sample

can be estimated using the background level of the respective p-value distribution,

%DE ¼ 1� η0 ð5Þ

%DE decreases with increasing error level and with increasing FDR at a selected p-
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value (p = const). In the supplementary text (Additional file 1) we studied the relation

between different error measures and the fraction of differentially expressed genes

more in detail. The number of differently expressed genes meeting a given significance

criterion is governed by the error level of the expression measures which, in turn, sys-

tematically varies between the different tissues and tissue types. On the other hand, we

found that data transformation after preprocessing and normalization can mask mutual

relations between the error measures including also the fraction of differentially

expressed genes.
Comparing alternative gene lists

Each of the alternative scores of differential expression provides an ordered list of dif-

ferentially expressed genes per tissue which are ranked, for example, with decreasing

absolute value of the score. The similarity between two lists of length r can be

described using the ‘correspondence at the top’ (CAT(r)) plot. It shows the fraction of

genes commonly found at the top of both lists up to rank r [57]. Note that ‘null-

correspondence’ for randomly ranked genes can be estimated using the hypergeometric

distribution and Eqs. (8) and (12) (see below). The respective CAT(r) value is given by

the probability that a selection of Nset = r genes is found among the top Nlist = r posi-

tions of a total list of length N, pHG = r/N (see below).

The CAT-plot thus estimates the agreement between two lists irrespective of the

particular score values of the genes in the lists. For example, two lists can agree with

CAT = 0.5 but differ with respect to the significance level of the remaining 50% of

genes. To assess this aspect of pairwise list comparisons we define the p-CAT(r) value

as the cumulative logged p-values of the t-shrinkage score of the r genes at the top of

the list obtained from the t-shrinkage or from the alternative scores. The p-CAT value

of the t-shrinkage score provides the lower limit because it per definition is ranked with

increasing p value. The corresponding p-CAT value of an alternative score such as the

WAD-statistics consequently judges the degree of discordance with respect to the t-

shrinkage statistics. It is given as the difference Δp� CAT ¼ p� CAT rð Þalternative score �
p� CAT rð Þt�shrinkage.

Finally, the rank-correspondence (RC) plot illustrates the agreement between two lists

by color-coding each position either in red or in green: green symbols assign ranks

which agree with ±20 positions in the alternative list whereas red ranks do not.
Differential expression of metagenes

SOM machine learning identifies k = 1. . .K metagenes where each of them is represen-

tative for a minicluster of nk real genes of correlated expression profiles. A simple

natural approach of combining significance information for a group of genes is to cal-

culate the mean characteristics averaged over the group members. Accordingly, we

calculate the mean p- and fdr- (Fdr) values for each metagene via arithmetic aver-

aging,

Sh ik;m ¼ 1
nk

Xnk

g¼1
Sg∈k;m ð6Þ
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where Sg,m = tg,m, log(pg,m), fdrg,m are the single gene significance characteristics of

gene g in metagene k and tissue m. Ranking of the averaged characteristics pro-

vides ordered lists of metagenes according to their differential expression.

Spots of adjacent metagenes are determined by applying different criteria, such as the

mutual correlations between the metagene profiles or their differential expression be-

yond an appropriately chosen threshold value. For example, metagenes are classified as

over- (or under-) expressed, if their expression value exceeds the 98% (or falls below

the 2%) quantile-level of the expression range of all metagenes in the particular tissue

studied. These spots are characterized by their mean significance characteristics as

averages over all genes of the respective spot in analogy with Eq. (6)

Smh ispot ¼
1X

k∈spot
nk

X
k∈spot

Xnk

g¼1
Sg∈k;m ð7Þ

Gene set overrepresentation analysis: integrating concepts of molecular function

Gene set analysis requires the knowledge of predefined gene sets to study their enrich-

ment in gene lists which are obtained from independent differential expression analysis

(see [7,8] for a critical review and references cited therein). A large and diverse collec-

tion of such sets can be downloaded from the ‘gene-set-enrichment-analysis’-website

(http://www.broadinstitute.org/gsea). Particularly, we included in total 1454 gene sets

in our analysis according to the GO terms ‘biological process’ (825 sets), ‘molecular

function’ (396 sets) and ‘cellular component’ (233 sets). These sets can partly overlap in

component genes, and some gene sets are subsets of others due to the hierarchical na-

ture of the GO-systematics [47]. Rather than merge these sets we kept them all in order

to maximize the functional annotation conveyed by the gene set names.

We will use the term ‘overrepresentation’ to assign the probability to find members

of a given set in a list compared with their random appearance independent of the

values of their expression scores. Contrarily, the term ‘overexpression’ will be used to

characterize deviations between the mean expression score averaged over the set-

members in a list compared with the mean score of all list members independent of

their overrepresentation. The term ‘enrichment’ will be used for estimates which com-

bine overrepresentation and overexpression (see below).

Particularly, in gene set overrepresentation analysis, each gene studied is classified

according to two memberships leading to a 2 × 2 contingency table for further testing

(Table 4): firstly, its membership in the particular set of functionally related genes of

length Nset and, secondly, its membership in the respective list of differentially expressed

genes of length Nlist. The intersection of the set and the list is given by the number of

‘positive’ genes, N+. Then, one can estimate overrepresentation of these positive genes

using the hypergeometric distribution by calculating the cumulative probability that there

is more overlap between the list and the set than would be expected by chance [58-60],

p ¼ P n > Nþð Þ ¼
XNset

n¼Nþþ1
pHG nð Þ with pHG nð Þ ¼

Nset

n

� �
N � Nset

Nlist � n

� �
N
Nlist

� � ð8Þ

http://www.broadinstitute.org/gsea


Table 4 2x2 contingency table of the number of genes in different classes for gene set
overrepresentation in a list of differentially expressed genes

# of genes in list not in list total

in set N+ Nset- N+ Nset

not in set Nlist- N+ N- (Nlist + Nset) + N+ N- Nset

total Nlist N- Nlist N
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The obtained p-value estimates the probability to find a stronger overlap between the

list and the set by chance than actually detected.

The gene set overrepresentation approach thus considers the joint membership of a

gene in a gene set and in an independent list of genes without taking into account the

rank and the particular values of the respective test statistics of the genes in the list. For

example, it ignores whether a positive gene is found on top or on bottom of the list or

whether a gene is strongly or weakly differentially expressed. In contrast, the so-called

gene set overexpression approach compares the gene set statistics with the null given by

the ensemble of all genes studied (see refs. [8] and [10] for a review). In this case however

no enrichment of a set in a sub-ensemble of a gene list is taken into account.

Gene set enrichment analysis: the GSZ-score

The so-called gene set Z-score (GSZ) merges both options provided by the gene set

overrepresentation and the gene set overexpression approaches [10]. Namely, the GSZ

method estimates overrepresentation of a gene set in a list using its score statistics, for

example, Sg∈list ¼ tg∈list . It is designed in such a way that members of the list with high

values on top of the list more heavily contribute than members with lower values down

the list. Particularly, one first transforms the total sum of the score function over the

gene list into two components containing members and non-members of the set,

Slist ¼
X

all g∈list
Sg ¼ Sþlist þ S�list with

Sþlist ¼
X

g∈list AND g∈set
Sg and S�list ¼

X
g∈list AND g∉set

Sg ð9Þ

Secondly, one defines the regularized Z-value of the differential score, ΔSlist ¼
Sþlist � S�list , of the form (see [10] for details)

GSZ ¼ ΔSlist � E ΔSlistð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ⋅SE ΔSlistð Þ2 þ 1� λð Þ⋅SE0

2
q ð10Þ

Here,
E ΔSlistð Þ ¼ Sh ilist⋅ Nþh iHG � N�h iHG
� � ¼ Sh ilist⋅ 2 Nþh iHG � Nlist

� �
and

SE ΔSlistð Þ2 ¼ 4
var Sð Þlist
Nlist � 1

Nþh iHG⋅ Nlist � Nþh iHG
� �� var Nþð Þ� �þ Sh ilist2⋅ var Nþð Þ

� �
ð11Þ

are the expected mean and the standard error of ΔSlist for the selected list under the

null hypothesis. sh ilist ¼ slist=Nlist and var Sð Þlist ¼ 1
Nlist

X
g∈list

Sg � Sh ilist
� �2

are the mean

and the variance of the expression score in the list, respectively. SE0 and λ denote the
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regularization constant and a scaling factor (1 ≤ λ ≤1) which were chosen to stabilize

the variance in the denominator of Eq. (10) especially for short lists (see below).

The mean and the variance of positive members of the hypergeometric distribution

are

Nþh iHG ¼ Nset
Nlist

N
and var Nþð Þ ¼ Nþh iHG⋅ 1� Nset

N

� �
N � Nlist

N � 1

� �
ð12Þ

respectively. The respective mean number of negative members is N�h iHG ¼
Nlist � Nþh iHG . One gets after inserting Eq. (12) into Eq. (11) for the special case

N ;Nlist >> 1
E ΔSlistð Þ ¼ Sh ilist⋅Nlist⋅

2⋅Nset

N
� 1

� �
and

SE ΔSlistð Þ2 ≈ 4⋅Nset
Nlist

N
⋅ var Sð Þlist⋅ 1� Nset

N

� �
þ Sh ilist2⋅ 1� Nset

N

� �
⋅ 1� Nlist

N

� �� �
ð13Þ

Eq. (13) indicates that the standard error in Eq. (10) vanishes for small sets and/or

short lists (compared with the total number of genes, i.e. Nlist/N < <1) giving rise to

instable estimates of the GSZ-score [10]. Making use of approximation Eq. (13) we

chose the regularization constant according to

SE0
2 ≈ 4 ⋅N min

list

N min
set

N
⋅ var Sð Þlist⋅ 1� N min

set

N

� �
þ Sh ilist2⋅ 1� N min

set

N

� �
⋅ 1� N min

list

N

� �� �

and λ ¼ 1� min 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N min

list

Nlist
⋅
N min

set

Nset

s !

ð14Þ

to penalize small lists and sets. Nlist
min and Nset

min are minimum settings (typically 5–10)

and Sh ilist and var Sð Þlist are the mean and the variance of the significance score in

the ensemble of all genes of the list. The ad-hoc estimate of the scaling factor λ ensures

that SE0 progressively increases with decreasing number of genes in the list and/or set.

Obtained GSZ-values were transformed into p-values using a permutation approach

which generates the respective null distribution by random rearrangement of genes in

the collection of predefined gene sets. One and two tailed tests were applied to assess

over- or underexpression and differential expression (i.e., under- and overexpression),

respectively.

In the following we consider two special cases of the GSZ-score referring to overex-

pression and overrepresentation, respectively.

Firstly, the GSZ-score can be calculated for the whole gene list with Nlist = N. Eq. (13)

provides for this special case E ΔSlistð Þ Nlist ¼N ¼ Sh ilist⋅ 2⋅Nset � Nð Þ

 and SE ΔSlistð Þ2

Nlist�N ≈ 4⋅Nset⋅ var Sð Þlist


 . The difference score becomes ΔSlist Nlist ¼N ¼ 2 Sþh ilist

�

 ⋅Nset �
Sh ilist⋅NÞ where Sþh ilist ¼ Sþlist=Nset is the mean expression score averaged over all

members of the gene set. Insertion into Eq. (10) for the special case λ = 1 provides the

GSZ-score of the full list
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GSZ Nlist ¼N ¼ Sþh ilist � Sh ilistffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þlist=Nset

p



 ð15Þ

It represents a Z-statistics estimating the overexpression in terms of the deviation

of the set average of the expression score from its total average over the whole gene

list where the standard error is estimated using the variance of S for sample size

Nset. The respective shrinkage statistics is obtained with the substitution

var Sð Þ→ var Sð Þ⋅ λþ 1� λð Þ ⋅N min
set

� �
≈ var Sð Þ ⋅N min

set in the denominator of Eq. (15).

The second special case assumes an identical value of the expression score for all

genes, Sg = 1, after ranking. The difference score thus simply counts the difference of

members and non-members of the set in the list, ΔSlist S¼ 1 ¼ Nþ � N� ¼ 2Nþ � Nlistj .

The expected mean value and the variance in Eqs. (11) and (13) are given by < S > list =

1 and var(S)list = 0, respectively. Insertion into Eq. (10) provides the GSZ-score with

λ = 1

GSZ S¼1 ¼
Nþ � Nþh iHG
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Nþð Þp ≈

Nþ � Nþh iHG
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nset ⋅Nlist

N ⋅ 1� Nlist
N

� �
⋅ 1� Nset

N

� �� �q ð16Þ









where the right hand approximation assumes N ;Nlist >> 1. It represents a Z-statistics

estimating the overrepresentation in terms of the deviation of the actual number of

positive members from the expected mean according to the hypergeometric distribu-

tion and the respective variance. Eq. (16) further simplifies for short lists and sets, Nlist,

Nset < <N, into:

GSZ S¼1 ≈
Nþ

list � Nþh iHG
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nset ⋅Nlist

N

q ð17Þ









The denominator substitutes for the shrinkage statistics with Nset ⋅Nlist →
N

max Nlist ⋅Nset ;N min
list ⋅N min

setð Þ
N .

Eqs. (15) and (16) thus illustrate that the GSZ-score in its general formulation in Eq.

(10) estimates enrichment in terms of a combination of overexpression and overrepre-

sentation Z-scores. It has been shown in ref. [10] that the GSZ-score is related to alter-

native scores, namely the Random Sets [61] and the max-mean gene set statistics [62]

representing a unification between these relevant scoring functions. Another compara-

tive study on different gene set enrichment methods showed that removing incoherent

pathways prior to analysis improves specificity [47]. The GSZ-score implicitly accounts

for coherency because inconsistent genes with positive and negative contributions to

the sum in Eq. (9) virtually compensate each other.

SOM-based metagene and spot enrichment

SOM analysis provides two-dimensional contour maps visualizing the expression pat-

tern of k = 1. . .K metagenes in a series of m = 1. . .M tissues. Each tile of the SOM refers
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to a minicluster of nk genes associated with the respective metagene. The over-

representation and/or overexpression of a gene set can be estimated for these metagene-

related lists of genes using the methods presented in the previous subsection. Importantly,

the list of length Nlist = nk per tile is invariant in all SOMs independently of the chosen tis-

sue sample. In consequence, overrepresentation analysis in terms of the hypergeometric dis-

tribution (Eq. (8)) provides p-values for each gene-set s and metagene, ps,k, which apply to

all particular SOMs of the series of tissues studied. In other words, metagene-related overre-

presentation is independent of the particular sample considered. We estimated overrepre-

sentation of the whole collection of 1454 gene sets in terms of a ranked list of p-values to

identify the most relevant gene sets for each metagene.

One can also pursue an orthogonal approach which calculates the significance of one

selected gene set in all metagenes to identify those of them which contain an enriched

population of the genes from the chosen set. The results are visualized in terms of the

so-called overrepresentation map. It color-codes the p-values of a particular gene-set in

the two-dimensional mosaic of the SOM. The overrepresentation map also allows to

link overrepresentation of a particular gene set with overexpression of the respective

metagene by comparison with the sample-specific SOM. Particularly, overrepresented

and overexpressed genes can be simply identified if overrepresentation and overexpres-

sion spots overlap in both maps. Note that the metagenes are located at the same posi-

tions in both maps.

In contrast to these sample-independent overrepresentation maps based on the hypergeo-

metric distribution one can use the GSZ-score (Eq. (10)) to study metagene-related gene set

enrichment in a sample-specific fashion. Also in this case we calculated p-values for all

1454 gene sets as default. The null distribution of the GSZ-score was calculated for each list

using randomly composed gene sets of equal length.

Gene set overrepresentation and enrichment analysis was also applied to gene lists which

are extracted from spots of adjacent metagenes. In this case, the respective length of the list

is given by the sum of the number of real genes belonging to all metagenes forming the

spot, Nlist ¼
X

k∈spot
nk . Spot-related overrepresentation analysis based on the HG-

distribution is characterized by one p-value per gene set and spot. It is independent of the

selected sample if the spot is invariant in all samples. We applied this approach by using the

global spots taken from the overexpression summary map which apply to all samples of the

series. In addition, sample-specific spots are determined using a common overexpression

threshold criterion to the SOM of different tissues. In this case one gets sample-specific

overrepresentation lists because the size and position of each spot can vary from sample to

sample and it can even disappear if the expression of the metagene strongly drops in a par-

ticular tissue. The GSZ-score delivers sample specific lists of gene sets for global and local

spots as well because it explicitly processed the expression values of the genes in each spot.

Complete sets of results for full tissue dataset as well as zooming-in analysis can be found

on our website: http://som.izbi.uni-leipzig.de.

Additional files

Additional file 1: The supplementary text addresses different details of our study: the error characteristics
in different tissues, the amount of non-informative genes, gene rankings of single genes, spot patterns of
randomized expression data, gene set overrepresentation and alternative spot selection, GSZ-enrichment
of selected spots in selected tissues and the selection of gene sets using global lists and gene set.

http://som.izbi.uni-leipzig.de
http://www.biomedcentral.com/content/supplementary/1756-0381-5-18-S1.pdf
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Furthermore, the results of gene set analysis of subsets of tissues (zoom-in) and different summary reports are
provided (Additional file 6).

Additional file 2: Atlas of the ranking maps of all tissues studied.

Additional file 3: Atlas of errors and p-value distributions of all tissues studied.

Additional file 4: Tissue specific gene sets.

Additional file 5: Special gene sets of highly and weakly expressed and of housekeeping genes.

Additional file 6: Results of gene set averaging approach.
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