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Abstract
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Background: Next-generation sequencing technologies generate a significant number of short reads that are
utilized to address a variety of biological questions. However, quite often, sequencing reads tend to have low
quality at the 3" end and are generated from the repetitive regions of a genome. It is unclear how different
alignment programs perform under these different cases. In order to investigate this question, we use both real
data and simulated data with the above issues to evaluate the performance of four commonly used algorithms:

Methods: The performance of different alignment algorithms are measured in terms of concordance between any
pair of aligners (for real sequencing data without known truth) and the accuracy of simulated read alignment.

Results: Our results show that, for sequencing data with reads that have relatively good quality or that have had
low quality bases trimmed off, all four alignment programs perform similarly. We have also demonstrated that
trimming off low quality ends markedly increases the number of aligned reads and improves the consistency
among different aligners as well, especially for low quality data. However, Novoalign is more sensitive to the
improvement of data quality. Trimming off low quality ends significantly increases the concordance between
Novoalign and other aligners. As for aligning reads from repetitive regions, our simulation data show that reads
from repetitive regions tend to be aligned incorrectly, and suppressing reads with multiple hits can improve

Conclusions: This study provides a systematic comparison of commonly used alignment algorithms in the context
of sequencing data with varying qualities and from repetitive regions. Our approach can be applied to different
sequencing data sets generated from different platforms. It can also be utilized to study the performance of other
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Background

The great demand for efficient, inexpensive, and accur-
ate sequencing has driven the development of high-
throughput sequencing technologies from automated
Sanger sequencing to next-generation sequencing (NGS)
over the past several years. Currently, NGS technologies
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are capable of producing low-cost data on a giga base-
pair scale in a single run, which usually includes millions
of sequencing reads. This ability makes the NGS tech-
nology a powerful platform for various biological appli-
cations, such as genetic variant detection by whole-
genome or target region resequencing, mRNA and
miRNA profiling, whole transcriptome sequencing,
ChIP-seq, RIP-seq and DNA methylation studies. The
first step of nearly all these applications is to align se-
quencing reads onto a reference genome. Thus, in order
to obtain any further genetic information from
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sequencing data, the requirement of fast and accurate
alignment tools has to be a priority [1].

In parallel with the rapid growth of new sequencing
technologies, many alignment programs [2-20] have
been developed, including MAQ, Novoalign (www.novo-
craft.com), SOAP, Bowtie, and BWA. Among all these
five aligners, MAQ is the only one that indexes the
reads, while all other aligners build indexes on a refer-
ence genome. In terms of the indexing algorithms they
adopt, MAQ and Novoalign are two alignment programs
that build an index with a hash table. To identify inexact
matches in short-read alignments, MAQ uses a split
strategy while Novoalign adopts an alignment scoring
system based on the Needleman-Wunsch algorithm
[21]. SOAP2 employs a similar split strategy as MAQ in
identification of inexact matches. Instead of using a hash
table, SOAP2 adopts the FM-index algorithm [22] to
build an index, which greatly reduces the alignment time
for substrings with multiple identical copies. Bowtie and
BWA are two other alignment programs developed
based on the FM-index method that uses a backtracking
strategy to search for inexact matches. These programs
serve as relatively efficient and accurate tools in aligning
large number of reads, and greatly extend the scale and
resolution of sequencing technology applications.

New challenges for alignments have arisen from apply-
ing sequencing technologies to address different bio-
logical questions. For example, how do reads with
various sequencing qualities affect alignment results?
How do they deal with the reads that can be mapped to
multiple locations on a reference genome? In order to
answer these questions, we select four commonly used
aligners (SOAP2, Bowtie, BWA, and Novoalign), and
conduct a systematic analysis to evaluate the perform-
ance of these programs. First, we review and compare
the algorithms these alignment programs employ as well
as their advantages with respect to the major options
they provide. Then, we use two sets of real Illumina se-
quencing data and two sets of simulated data to study
how different alignment programs perform on sequen-
cing data with varying quality and from repetitive
regions. The performance is measured in terms of 1)
concordance between any pair of the aligners, and 2) ac-
curacy in simulated read alignment. We have demon-
strated that, for sequencing data with reads that have
relatively good quality or have had the low quality bases
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trimmed off, all four alignment programs perform simi-
larly. Furthermore, we show that trimming off low qual-
ity ends markedly increases the number of aligned reads
and improves the consistency among different aligners
as well, especially for low quality data. However, Novoa-
lign is more sensitive to the improvement of data qual-
ity. As for aligning reads from repetitive regions, our
simulated data show that reads from repetitive regions
tend to be aligned incorrectly, and suppressing reads
with multiple hits can improve alignment accuracy.

Methods

Reviewing the features of alignment programs

Hash table and suffix tree are two major indexing algo-
rithms that current alignment programs use. Hash table
indexing, which was first introduced into the field of align-
ment by BLAST [23], keeps the positions of k-mer query
subsequence as keys, and then searches for the exact
match of the keys in reference sequences. It consumes less
space since it builds an index for positions of sequences
instead of the sequences themselves. Among different suf-
fix tree algorithms, FM-index is based on the Burrows-
Wheeler transforms (BWT) [24]. BWT is a reversible per-
mutation of characters in a text. It transforms the original
character string into a more compressed format, where
the same characters are placed side by side as a cluster, ra-
ther than in a scatter pattern. Out of the four alignment
programs we are interested in, Novoalign adopts a hash
table algorithm, while SOAP2, Bowtie, and BWA adopt
the FM-index (Table 1).

To find inexact matches, alignment programs allow a
certain number of mismatches using different strategies
(Table 1). SOAP2 uses a split-read strategy to allow at
most two mismatches. A read will be split into three
fragments, such that the mismatches can exist in, at
most, two of the three fragments at the same time. Bow-
tie uses a backtracking strategy to perform a depth-first
search through the entire space, which stops until the
first alignment that satisfies specific criterion is found
[15]. Similar to Bowtie, BWA also adopts a backtracking
strategy to search for inexact matches. However, the
search in BWA is bounded by the lower limit of number
of mismatches in the reads. With this limit better esti-
mated, BWA is able to define a smaller search space,
and thus make the algorithm more efficient [16]. More-
over, BWA provides a mapping quality score for each

Table 1 Algorithm of four aligners: SOAP2, Bowtie, BWA, and Novoalign

SOAP2 Bowtie BWA Novoalign

(2.20)* (0.12.3) (058 Q) (2.07.00)
Indexing FM-index FM-index FM-index Hash table
Inexact match Split read Quality-aware backtracking Backtracking Alignment scoring

*version of the program.
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read to indicate the Phred-scaled probability of the
alignment being incorrect. This mapping quality score
incorporates base qualities, number of mismatches, and
the repeat structure. The higher the mapping quality
score, the more accurate an alignment is. A zero will be
assigned if a read is aligned to at least two locations with
equal probabilities. On the other hand, Novoalign first
finds candidate alignment positions from the reference
genome for each read, and calculates alignment scores
for these positions using the Needleman-Wunsch algo-
rithm, based on base qualities, the existence of gap, and
ambiguous codes (Ns). This alignment score is 10logq
(q), where g represents the probability of observing the
read sequence given a specific alignment location. This
score corresponds to the parameter setting “-t” at the
command line when running Novoalign which finds the
best alignment with the lower score and any other align-
ments with similar scores. Because of this alignment-
score-based search algorithm, users cannot define the
number of allowed mismatches in each alignment, but
they can set up a threshold of alignment scores.

We also summarize the major options that the four
alignment programs provide (Table 2). SOAP2, Bowtie,
BWA, and Novoalign all allow pair-end alignments, en-
able the identification of the best alignment, and incorp-
orate certain ways of trimming low quality bases
(Table 2). There are some characteristics unique to cer-
tain aligners. For example, in BWA, the maximum num-
ber of allowed mismatches is sensitive to the length of
reads. If less than 4% of m-long reads with 2% uniform
base error rate have more than k& mismatches, then the
maximum number of allowed mismatches in these reads
is set to be k. Thus, for our simulated data with 50-bp-
long reads, k= 3. For the real NGS data with 68-bp-long
reads, k=4 (Table 2). This number may vary depending
on the length of reads after trimming. Unlike the other
programs, Novoalign does not allow the users to define
the number of allowed mismatches. However, this par-
ameter can be set indirectly by defining the threshold of
the alignment score. In practice, setting the threshold at
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-t 60" will be approximately equivalent to allowing two
mismatches at high quality base positions and maybe
one mismatch at a low quality position.

Alignment performance evaluation

Data sets

In order to examine how the four selected alignment
programs (i.e., SOAP2, Bowtie, BWA, and Novoalign)
perform on real sequencing data with varying quality, we
use two single-end Illumina sequencing data sets (S1
and S2). S1 and S2 are sequenced from human colon
cancer samples. For each of these two samples, about
3000 exons selected from cancer related genes are cap-
tured and sequenced by the Illumina sequencer, with
7,406,247 and 5,398,566 68-bp-long single-end reads
generated respectively. We process the reads with Short-
Read package inside of Bioconductor (http://www.bio-
conductor.org) to evaluate the bases quality. The plot of
base qualities suggests that S1 has an overall better qual-
ity than S2. For example, S2 has more low quality bases
at the 3’ end. In particular, the last 10 bases have average
quality score less than 20 (Figure 1).

In order to examine how the four selected align-
ment programs perform on sequencing data obtained
from repetitive regions, we simulate two sets of data
from human genome 18: 1) 138771 50-bp-long reads
are generated from about 3000 exon regions from
which the real data sets S1 and S2 are generated,
and these 3000 exon regions do not have many re-
petitive regions; 2) 55018 50-bp-long reads are gen-
erated from 218 CpQG islands. These 218 CpG islands
are selected from 28226 CpG islands along the
whole genome, by the criteria that each chosen CpG
island must have at least 25% repetitive bases, and
these repetitive bases must be at least 50 bp in
length. Note that the purpose of this article is not to
simulate reads from all repetitive regions in a gen-
ome. It is difficult to precisely define repetitive
regions in a genome. Therefore, we simply choose to

Table 2 Available options in SOAP2, Bowtie, BWA, and Novoalign

SOAP2 (2.20) Bowtie (0.12.3) BWA (0.5.8 C) Novoalign (2.07.00)
Mismatch allowed exactly 0,12 max in seed, 0-3 max in read up to k* up to 8 or more in single end;
Alignments reported per read random/all/none up to any up to any random/all/none/
Gap alignment 1-3 bp gap unavailable available up to 7 bp
Pair-end reads available available available available
Best alignment minimal number of minimal number of minimal number of highest alignment score
mismatch mismatch mismatch
Trim bases 3" end 3"and 5" end available 3 end**

*Given a read of length m, less than 4% of m-long reads with 2% uniform base error rate may have more than k mismatches. For m=15-37 bp, k=2; for m=38-
64 bp, k=3; for m=64-92 bp, k=4; for m=92-123 bp, k=5; for m=124-156 bp, k=6.

**only available for single-end reads.
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Figure 1 Mean quality score and standard deviation for each base in S1 and S2 data sets. Quality score is assessed in lllumina FASTQ format.

Bases

use some CpG islands that have some level of re-
petitive regions.

In order to mimic the situation that one or two single
bases are mismatches due to pure sequencing errors or
true novel single nucleotide variants (SNV), we design
the following four scenarios in our simulation data:

1) randomly set one mismatch for each read and let all
bases have high quality;

2) randomly set two mismatches for each read and let
all bases have high quality;

3) randomly set one low quality mismatch for each
read and let all other bases have high quality;

4) randomly set two low quality mismatches for each
read and let all other bases have high quality.

1) and 2) are the cases that the mismatches are likely
due to the existence of novel SNVs. 3) and 4) are the
cases that the mismatches are likely due to pure sequen-
cing errors. Low quality bases are the ones with Phred
quality score ranging from 5-15; high quality bases are
the ones with Phred quality score ranging from 30-40.
Phred quality score is defined as -10*log;o(p), where p is
the base-calling error probability.

Trimming, alignment, and evaluation

In order to evaluate how different alignment programs
perform in sequencing reads with low quality ends, we
use the four alignment algorithms to map S1 and S2 be-
fore and after trimming off the low quality bases using
BRAT trim [18], respectively. In particular, we set the

parameters of BRAT as trimming from both the 5" and 3’
ends until reaching a base with quality score higher than
20, and allowing at most two Ns in each read. The
length of the trimmed reads is at least 24 bases, and the
majority of them are larger than 50 bases. We then per-
form alignments against the human genome 18 on
trimmed and non-trimmed S1 and S2 data using
SOAP2, Bowtie [15], BWA [13], and Novoalign (www.
novocraft.com), respectively. For the purpose of this
study, we set the parameters in all four alignment pro-
grams as follows: 1) At most two mismatches are
allowed in SOAP2, Bowtie, and BWA for each align-
ment. Due to the different alignment searching algo-
rithm that Novoalign uses, we set the parameter t at 60
to allow approximately up to two mismatches, and then
choose the alignment reads with no more than two mis-
matches using the NM tag in the output. 2) Randomly
report one alignment for each read, or only report reads
with unique alignments. For each alignment result we
calculate the percentage of aligned reads. The perform-
ance of four alignment programs is measured in terms
of concordance between any pair of aligners because no
known truth for real sequencing data is available. In par-
ticular, for each pair of aligners, aligned reads are
assigned into four classes as follows:

Class 1: a read is aligned to the same location by both
aligners that we are comparing (e.g., aligner 1 and
aligner 2);

Class 2: a read is aligned to different locations by both
aligners;
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O Reads aligned by one aligner

O Reads aligned by the other aligner in a comparison pair

Class 1

Class 3

Class 2

Figure 2 The four classes to which all reads are assigned
during a pair-wise comparison. Class1 is a group of reads each of
which is assigned to the same location by aligners 1 and 2; Class 2
is a group of reads each of which is assigned to a different location
by aligner 1 and 2; Class 3 is a group of reads each of which is only
aligned by aligner 1; Class 4 is a group of reads each of which is
aligned only by aligner 2.

Class 3: a read is only aligned by one of the two aligners
(e.g., aligner 1);

Class 4: a read is only aligned by the other aligner in a
comparison pair (e.g., aligner 2).

If two alignment algorithms perform similarly, there
should be a relatively small number of reads in class 2, 3
and 4 as shown in Figure 2.

In order to evaluate how different alignment algorithms
perform on data containing reads generated from regions
with more repetitive sequences, we use two simulated data
sets. One data set is simulated from the 3000-exon regions
that do not have a lot of repetitive bases and the other one
is from 218 selected CpG islands that have many repetitive
bases. For both simulated data sets, we align these reads
using the four selected alignment programs. While align-
ing these simulated reads, all parameters are set the same

Table 3 Indexing and alignment time of four alignment
programs

Programs Index time  Alignment time  Reads aligned
(min) (min) (%)

SOAP2 (2.20) 89.50 154 75.96

Bowtie (0.12.3) 192.00 212 75.71

BWA (058 O) 101.50 264 76.12

Novoalign (207.00)  4.02 629 74.61

Index is built on the human genome 18 for each aligner. 7.4 million single-end
reads are then mapped onto the human genome 18. The read length is 68 bp.
At most two mismatches are allowed in all programs, and one alignment is
randomly reported for each read. The CPU time in minutes on dual quad-core
2.66Ghz Xeon E5430 processor for index building and alignment processing,
as well as percent of mapped reads, are shown in this table.
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as the ones used in real NGS data, except that we allow
one mismatch for those data sets with only one mismatch
simulated. Because we know the position from which each
simulated read is generated, the performance of the four
alignment tools is measured in terms of the accuracy of
simulated read alignment. We define a true alignment as a
situation when a read is aligned back into the same pos-
ition from which it was generated. In addition, a false
alignment is defined as a read that is aligned to other posi-
tions rather than the one from which it was generated.

Results

Benchmark of aligners

To assess the speed of index building and reads mapping
in these four aligners, we use the non-trimmed S1 data,
which has 7.4 million 68-bp-long single-end reads. We
align these reads using the human genome 18 as a refer-
ence, with at most two mismatches allowed and one align-
ment randomly reported for each read (Table 3).
Novoalign is extremely fast (4.02 min) at index building,
while the other three take more than one hour to finish
the same job (Table 3). As for reads mapping, SOAP2 and
Bowtie have a similar number of reads mapped although
SOAP2 takes 6 minutes less than Bowtie. BWA maps
76.12% of all reads, which is slightly more than SOAP2
and Bowtie, within 26.4 minutes. Novoalign, on the other
hand, is much more time-consuming. It takes 62.9-minute
CPU time to align 73.64% of reads in single-end mode.

Aligners’ performance on sequencing data with different
qualities

For the data set S1 that has relatively good quality, all
four aligners generally show a good concordance, with-
out trimming off low quality bases. A similar number of
reads is aligned by each aligner (Table 4). Over 95% of
the reads are assigned into class 1 (i.e., more than 95%
of reads are aligned to the same locations by both

Table 4 Percentage of reads aligned in S1 and S2 data
sets by four aligners under different settings

S1 S2

w/o trim  w/trim

w/o trim  w/trim
7,406,247 7,006,805 5,398,566 5,193,655

Randomly SOAP2 75.96% 91.45% 42.12% 76.81%

;‘T@f};ggf Bowtie  7571%  9136%  4183%  7667%

per read BWA 7612%  91.80%  41.94%  76.88%
Novoalign  73.64% 91.60% 34.50% 76.94%

Suppress reads SOAP2 71.85% 85.90% 39.75% 71.31%

w/ multiple )

alignments Bowtie 6882%  8190%  3889%  6863%
BWA 74.40% 84.07% 39.12% 69.75%
Novoalign 6967%  86.09%  3263%  71.63%
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Table 5 Agreement among aligners in S1 non-trimmed data
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Comparison pair Class 1 Class 2 Class 3 Class 4
Randomly report one alignment per read SOAP2 vs. Bowtie' (5,626,038)° 96.25% 341% 0.34% 0.002%
SOAP2 vs.BWA (5,656,559) 95.72% 3.40% 0.34% 0.54%
Bowtie vs. BWA (5,637,504) 95.80% 3.66% 0.00002% 0.54%
SOAP2 vs. Novoalign (5,757,260) 85.13% 7.32% 527% 2.28%
Bowtie vs. Novoalign (5,748,724) 85.18% 7.26% 5.13% 247%
BWA vs. Novoalign (5,835/451) 85.20% 7.24% 537% 2.19%
Suppress reads with multiple alignments SOAP2 vs. Bowtie (5,321,512) 95.78% 0.00002% 4.22% 0.003%
SOAP2 vs.BWA (5,361,466) 96.50% 0.0005% 2.75% 0.75%
Bowtie vs. BWA (5,213,871) 97.76% 0.00% 0.0004% 224%
SOAP2 vs. Novoalign (5,447,206) 88.14% 4.27% 5.28% 231%
Bowtie vs. Novoalign (5,432,410) 84.72% 4.08% 5.02% 6.18%
BWA vs. Novoalign (5,458,788) 85.92% 4.11% 548% 449%

1. Comparison pair in the format of aligner 1 vs. aligner 2.
2. Total number of reads aligned by either of these two aligners in a comparison pair.

aligners) when comparing SOAP2, Bowtie, and BWA,
pairwise, while Novoalign shows slightly less agreement
(84-88%) with the other three aligners (Table 5). How-
ever, for the S2 data set that has very low quality bases
at many reads, the comparison results are quite differ-
ent. In non-trimmed data set S2, when Novoalign is
compared with any of the other three aligners, less than
50% of reads are assigned to class 1 (i.e., less than 50%
of reads are aligned to the same locations by both
aligners), but 15% of the reads are assigned to class 2
(i.e., 15% of reads are aligned to different locations by
two aligners), and over 30% are assigned to classes 3 or 4
in total (i.e., about 30% of reads are aligned by only one of
the two aligners), respectively (Table 6). That means for
Novoalign and any other aligner (SOAP2, Bowtie, or
BWA), only 50% of all aligned reads are mapped by both

Table 6 Agreement among aligners in S2 non-trimmed data

of them. This inconsistency of Novoalign’s performance in
different data sets might result from the fact that S2 has
overall lower quality than the S1 data set (Figure 1). To
further investigate the effect of sequencing quality, we trim
both S1 and S2 data sets with BRAT trim, and then do
alignment using the four aligners.

Performing trimming on NGS data not only cuts off
the low quality bases from both ends, but also discards
poor quality reads, and thus improving reads’ quality
markedly. After trimming, 399,442 (5.4%) and 204,911
(3.8%) reads are discarded from S1 and S2 data, respect-
ively. With slightly fewer reads available for alignment,
however, the number of aligned reads is increased by 15-
17% in the S1 data, and 34-42% in the S2 data, for all
four-alignment programs. This apparent difference in
the magnitude of increase indicates that trimming has a

Comparison pair Class1 Class 2 Class 3 Class 4
Randomly report one alignment per read SOAP2 vs. Bowtie' (2,209,957)° 95.69% 3.62% 0.69% 0.003%
SOAP2 vsBWA (2,215,397) 95.45% 361% 0.69% 0.25%
Bowtie vs. BWA (2,200,129) 95.37% 3.70% 0.00% 0.25%
SOAP2 vs. Novoalign (2,436,379) 49.58% 15.40% 25.72% 9.26%
Bowtie vs. Novoalign (2,424,001) 49.81% 15.38% 25.53% 9.46%
BWA vs. Novoalign (2,428,458) 49.68% 15.44% 25.48% 9.40%
Suppress reads with multiple alignments SOAP2 vs. Bowtie (2,085,316) 97.84% 0.00% 2.15% 0.007%
SOAP2 vsBWA (2,094,218) 97.57% 0.0008% 1.99% 043%
Bowtie vs. BWA (2,052,464) 99.94% 0.00% 0.0003% 0.59%
SOAP2 vs. Novoalign (2,303,060) 51.37% 13.36% 25.71% 9.46%
Bowtie vs. Novoalign (2,283,644) 50.93% 13.35% 25.07% 10.65%
BWA vs. Novoalign (2,292,171) 50.86% 13.33% 25.35% 10.46%

1. Comparison pair in the format of aligner 1 vs. aligner 2.
2. Total number of reads aligned by either of these two aligners in a comparison pair.
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Table 7 Agreement among aligners in S1 trimmed data
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Comparison pair Class 1 Class 2 Class 3 Class 4
Randomly report one alignment per read SOAP2 vs. Bowtie' (6,409,534) 95.89% 3.95% 0.13% 0.03%
SOAP2 vs.BWA (6,440,873) 95.42% 3.92% 0.13% 0.52%
Bowtie vs. BWA (6,432,433) 95.30% 4.21% 0.00002% 049%
SOAP2 vs. Novoalign (6,430,033) 94.62% 4.84% 0.13% 0.35%
Bowtie vs. Novoalign (6,422,084) 94.77% 4.84% 0.07% 0.33%
BWA vs. Novoalign (6,435,917) 94.83% 4.84% 0.30% 0.05%
Suppress reads with multiple alignments SOAP2 vs. Bowtie (6,020,802) 95.29% 0.0002% 4.68% 0.003%
SOAP2 vs.BWA (6,068,512) 96.26% 0.0005% 293% 0.81%
Bowtie vs. BWA (5,890,868) 97.42% 0.00% 0.0004% 2.58%
SOAP2 vs. Novoalign (6,043,150) 98.47% 0.95% 0.18% 0.40%
Bowtie vs. Novoalign (6,035,510) 94.11% 0.92% 0.06% 4.92%
BWA vs. Novoalign (6,066,586) 95.62% 0.92% 0.57% 2.90%

1. Comparison pair in the format of aligner 1 vs. aligner 2.

2. Total number of reads aligned by either of these two aligners in a comparison pair.

greater effect on the S2 data set than on the S1 data set.
Another interesting observation is that, Novoalign aligns
42% more reads in trimmed S2 than non-trimmed S2,
while this increment in the other three aligners is only
about 35%, suggesting that data quality improvement
has a larger effect on Novoalign.

By trimming off the reads before alignment, we ob-
serve a substantial increase in the number of reads that
fall into class 1 in all pair-wise comparisons, in both S2
and S1 data sets (Tables 5, 6, 7, and 8). That is, more
reads are aligned to the same locations by the compari-
son pair. This increase indicates an improved concord-
ance among the four aligners. Moreover, trimming
appears to have a greater effect on S2, a data set with
lower quality, than the S1 data set. In the pair-wise

Table 8 Agreement among aligners in S2 trimmed data

comparisons between Novoalign and any of the other
three aligners for S2 data set, the number of reads
assigned to the first class increases almost 3-fold, (1.2
million vs. 3.7 million), while the number of reads that
are only aligned by the opponents of Novoalign become
markedly less (see class 2 of Table 8), compared to non-
trimmed alignments (see class 2 of Table 6). On the
other hand, in the S1 data set, trimming only improves
the agreement between Novoalign and the other three
aligners by 8-10% (Tables 5, 7). This differentiation in
the magnitude of concordance improvement, along with
the fact that performing trimming leads to a more sig-
nificant improvement in reads’ quality for S2 data set,
further indicates that Novoalign is more sensitive to-
wards the changes in sequencing quality.

Comparison pair Class 1 Class 2 Class 3 Class 4
Randomly report one alignment per read SOAP2 vs. Bowtie' (3,890,070)° 94.94% 4.84% 0.20% 0.02%
SOAP2 vsBWA (3,900,529) 94.69% 4.82% 0.20% 0.29%
Bowtie vs. BWA (3,892,602) 94.77% 4.96% 0.0002% 0.27%
SOAP2 vs. Novoalign (3,909,055) 93.84% 532% 0.34% 0.50%
Bowtie vs. Novoalign (3,901,709) 94.50% 5.30% 0.15% 0.50%
BWA vs. Novoalign (3,908,656) 93.96% 5.30% 0.33% 041%
Suppress reads with multiple alignments SOAP2 vs. Bowtie (3,611,489) 96.20% 0.0002% 3.79% 0.02%
SOAP2 vsBWA (3,636,423) 96.42% 0.0007% 2.87% 0.70%
Bowtie vs. BWA (3,531,986) 98.38% 0.00% 0.0007% 1.62%
SOAP2 vs. Novoalign (3,638,616) 98.07% 0.54% 0.32% 0.76%
Bowtie vs. Novoalign(3,631,179) 95.06% 0.52% 0.11% 431%
BWA vs. Novoalign (3,652,782) 97.99% 0.54% 0.70% 331%

1. Comparison pair in the format of aligner 1 vs. aligner 2.
2. Total number of reads aligned by either of these two aligners in a comparison pair.
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Aligners’ performance on reads with multiple alignments
To evaluate these aligners in terms of their performance
on reads with multiple alignments, we set the alignment
parameters in two different ways: (1) randomly report
one alignment for each read and (2) only report the read
with a unique position (suppress reads that can be
aligned to multiple locations). Compared to the former
strategy, the latter discards around 4-10% of aligned
reads from S1 and 2.5-8% in S2 (see Table 4).

In pair-wise comparisons among all four aligners, we
find that in both S1 and S2 data sets, suppressing mul-
tiple alignments decreases the number of reads aligned
to different positions (class 2) in all comparison pairs,
while the number of reads aligned to same positions
(class 1) stays the same (Tables 5, 6, 7, 8). Reads with
multiple alignments are more likely to be aligned to dif-
ferent locations by different aligners, due to the differ-
ence in alignment strategies these aligners employ, as
well as the standards of how to randomly choose one
alignment to report. Therefore, the number of reads
assigned to class 2 during comparison is reduced by sup-
pressing multiple alignments. Next, we will use simu-
lated data to investigate further.

Aligners’ performance on simulated data
In order to study the four aligners’ performance on reads
from repetitive regions, we use the two sets of simulated
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data as mentioned in the Data Set subsection. One data
set is simulated from 3000 exon regions that do not have
many repetitive bases. The other data set is from 218
selected CpG islands that have a lot of repetitive bases. In
these two simulated data sets, no matter whether the mis-
match positions are designed to have high or low quality,
all four aligners show a lower false alignment rate in the
data set generated from 3000 exon regions (0.7-5%, see
Table 9A, B) compared to the data set generated from 218
CpG islands that have more repetitive regions (14-17%, see
Table 10A, B). Since the reads from regions with repetitive
bases have a much higher probability of being aligned onto
multiple locations, we can predict that suppressing mul-
tiple hits can help to diminish the false alignments caused
by repetitive bases. As expected, the alignment accuracy in
CpG island simulation data is substantially improved by
suppressing multiple alignments (Table 10A, B).

By assigning mismatches with high quality, we mimic
the true novel variants that are more likely to have bet-
ter quality. By assigning mismatches with low quality,
we mimic the pure sequencing errors. In both cases,
SOAP2, Bowtie, and BWA are found to have similar
false alignment rates no matter whether the alignment
report is randomly reporting one alignment or suppres-
sing reads with multiple hits (Tables 9 and 10). How-
ever, Novoalign exhibits higher false alignment rates
compared to the other three aligners.

Table 9 Percentage of aligned reads and the false alignment rate for 3000 exon simulation data

A. Mismatches with high quality (30-40)

Mismatch Settings SOAP2 Bowtie BWA Novoalign
1 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 0.76 0.77 0.76 4383
Suppress reads w/multiple alignments aligned (%) 98.69 98.65 98.68 98.69
False alignments (%) 0 0 0 413
2 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 0.78 0.78 0.76 8.95
Suppress reads w/multiple alignments aligned (%) 98.69 98.68 98.68 98.67
False alignments (%) 0 0 0 8.26
B. Mismatches with low quality (5-15)
Mismatch Settings SOAP2 Bowtie BWA Novoalign
1 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 0.77 0.75 0.76 3.10
Suppress reads w/multiple alignments aligned (%) 98.69 98.65 98.68 98.69
False alignments (%) 0 0 0 413
2 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 0.77 0.81 0.76 549
Suppress reads w/multiple alignments aligned (%) 98.69 98.68 98.68 98.67
False alignments (%) 0.02 0 0 478
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Table 10 Percentage of aligned reads and the false alignment rate for 218 CpG island simulation data
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A. Mismatches with high quality (30-40)

Mismatch Settings SOAP2 Bowtie BWA Novoalign
1 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 13.80 13.84 13.80 17.25
Suppress reads w/multiple alignments aligned (%) 84.26 84.26 84.26 84.34
False alignments (%) 0 0 0.01 409
2 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 13.90 13.98 1391 20.77
Suppress reads w/multiple alignments aligned (%) 84.39 84.22 84.39 84.23
False alignments (%) 0.21 0 0.02 8.20
B. Mismatches with low quality (5-15)
Mismatch Settings SOAP2 Bowtie BWA Novoalign
1 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 13.79 13.83 13.80 15.93
Suppress reads w/multiple alignments aligned (%) 84.26 84.26 84.26 84.34
False alignments (%) 0 0 0.001 242
2 Randomly report one alignment aligned (%) 100 100 100 100
False alignments (%) 13.82 13.86 1391 17.79
Suppress reads w/multiple alignments aligned (%) 84.39 84.22 84.39 84.23
False alignments (%) 021 0 0.02 4.86

Discussion

Trimming off the low quality ends of reads improves
their quality, and thus improves their alignment results.
Although the number of reads available for alignments
decreases after trimming, we still observe an increase in
the number of successfully aligned reads as well as in
the concordance among aligners. S1, with a higher mean
and a smaller deviation of base quality score, clearly has
better quality than S2 (Figure 1). Thus, it is predictable
that trimming has a greater effect on the S2 data set
than on the S1 data set, which has been shown by our
data analysis. Having a lower quality at the 3’ end is a
commonly observed problem in single-end sequencing
data, especially in the early version of the Illumina se-
quencer. By trimming, which only takes a few minutes
to process for a data set with several million reads, users
can benefit greatly. For example, more information can
be extracted from the data since more reads will be
aligned after trimming. With the improvement in align-
ment quality and quantity seen here, we recommend
trimming prior to any alignment and downstream ana-
lysis, especially for poor quality data.

In the better quality data set S1, Novoalign performs
similarly to SOAP2, Bowtie, and BWA, no matter which
set of parameters we use. However, in the lower quality
data set S2, Novoalign shows patterns that are different
from the other three aligners. For example, Novoalign
aligns more reads than the others and shows a greater

increase in the number of aligned reads after trimming
(Table 5). This might be due to the differences in align-
ment algorithms between Novoalign and the others. As
we have shown, in SOAP2, Bowtie, and BWA, the align-
ment strategy is restrained by the number of mismatches
allowed. That means users can specify the number of
mismatches they prefer for any alignment process to ob-
tain optimal results for their purpose. Unlike the other
three, Novoalign uses an alignment score as a criterion.
This alignment score is calculated based upon the base
qualities, the existence of gaps, and the ambiguous codes
for the entire read. For Novoalign, setting the threshold
of the alignment score “-t” at 60 in the command line
ensures that only the alignments with an alignment
score of no more than 60 are reported, which is approxi-
mately equivalent to allowing two mismatches in align-
ment. However, this is only the case when the quality of
reads is within a reasonable range. When applying these
aligners to poor quality data sets, such as S2, Novoalign
may become more sensitive to the quality and therefore
show quite different results as compared to SOAP2,
Bowtie, and BWA. After trimming off the low quality
ends, the quality of reads has been improved. Thus, the
Novoalign results become more similar to the others.
Since the alignment results may be sensitive to the
choice of the alignment score threshold, especially for the
lower quality data S2, we explore the impact of this par-
ameter “-t” in Novoalign by setting it at different values:
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default, 60, 70, and 75. For both S1 and S2 data sets, ‘de-
fault value’ decreases the concordance of Novoalign with
other aligners dramatically; using 70 and 75, the concord-
ance of Novoalign and other aligners is similar as the one
using 60. Therefore, we conclude that the pattern of lower
concordance of Novoalign with others in a poor quality
data set is not due to improper parameter choice.

Other than Novoalign, Bowtie also allows users to
have the option of considering the qualities of mis-
matches. It enables users to set the maximum permitted
total of quality values at all mismatched positions
throughout the entire alignment (ie., the “-e” option
when setting parameters to run Bowtie). To investigate
this parameter setting in Bowtie, we both allow 2 mis-
matches and set the parameter “—e” at 20, 40, 60, and 80
respectively (data not shown). For our data sets, when
the “-e” parameter is set at 40, 60 and 80, there are
nearly identical results as compared to the output from
only setting the number of allowed mismatches at 2
(i.e., “-v 27). But setting “—e” at 20 shows severe
departures from other three aligners. In our data sets,
most reads have moderate to good quality scores. However,
setting “—e” at 20 only allows extremely low quality mis-
matched positions, and therefore, rules out the majority of
reads with high quality mismatched positions.

Like trimming off the reads, suppressing multiple
alignments also improves the consistency among the
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three aligners (Table 6). Out of the multiple locations of
the reference genome that one read can be aligned onto,
only one is true. Even though all aligners can choose one
alignment for each read, based on a certain standard,
there is no guarantee that the one they choose repre-
sents the true location. Thus, eliminating all reads hav-
ing multiple alignments will help improve the accuracy
of alignments and also the consistency among the four
aligners. Our analysis resulting from the S1 and S2 data
sets supports this conclusion. We design one simulated
data set that contains many repetitive bases. By eliminat-
ing reads with multiple alignments, the false alignment rate
decreases to almost 0 for SOAP2, Bowtie, and BWA, and
below 9% for Novoalign (Table 10).

In addition to the trimming and initial parameter set-
ting of aligners, we also investigate the impact of filter-
ing the alignments based on the mapping quality score
provided in the output files of different aligners. Out of
the four aligners, BWA and Novoalign both have a map-
ping quality score reported for each alignment. For
BWA, this score is approximately a Phred-scaled prob-
ability of the alignment being incorrect, which takes the
values of 37, 25, and any value between 23 and 0. In gen-
eral, a score of 37 means the read is aligned to a unique
position with less than 2 mismatches; a score of 25
means the read is aligned to a unique position with 2
mismatches; a score between 23 and 0 means the read is
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aligned to multiple locations, such that a lower score
means that the mapped location is less accurate (based
on BWA source code). For Novoalign, the mapping
quality score is the probability of the alignment given
the read and genome, which ranges from 0 to 150.
Higher scores mean better alignment qualities. To ex-
plore the effect of quality score filtering, we checked the
mapping quality scores in the untrimmed S1 and S2 data
with one alignment reported randomly (Figure 3). The
distribution of scores shows that both aligners yield
alignments with high mapping quality scores. For
Novoalign, the majority of reads have a mapping quality
score of 150 (Figure 3A and B), which is the upper limit
of the score. While for BWA, the majority of reads have
a score of 37 or 25 (Figure 3C and D), which means each
of them is explicitly aligned to a unique position with 0
to 2 mismatches. A small fraction of reads have scores
between 23 and 0. These reads are generally mapped to
multiple locations in the reference genome. Therefore,
quality score filtering wouldn’t show much impact on
the concordance among aligners in the real data sets. In
addition, since SOAP2 and Bowtie do not have align-
ment quality scores in their respective output files, to
ensure a relatively fair comparison, no alignment quality
filters are used.

As for the mapability of those target regions that we
used in our simulation data, we have checked the map-
ability using the “Duke uniqueness 35 bp” method pro-
vided by the UCSC genome browser for the 218 CpG
islands and 3000 exon regions. This Duke method
reports a mapability score between 0 and 1, with 1
representing a completely unique sequence. A score of
0.5, 0.3, 0.25, or 0 represents that the sequence occurs
twice, three times, four times, or more than four times,
respectively. For the 218 CpG islands, 80.09% are com-
pletely unique, which means all 35-bp sequences within
these islands occur only once in the genome; while
19.91% are not completely unique, which means at least
one 35-bp sequence within each of these islands occurs
more than once in the genome. The median mapability
score of all CpG islands is 1 and the mean is 0.9830. For
the 3000 exon regions, 95.40% are completely unique
and 4.60% are not completely unique. The median map-
ability score of all regions is 1 and the mean is 0.9930.
Generally speaking, the 3000 exon simulation data has
better mapabilty than the 218 CpG island data.

There are different ways to evaluate the current avail-
able programs. For example, Ruffalo et al. developed a
simulation and evaluation suite to compare a few avail-
able aligners only using simulated data [25]. In this art-
icle, we focus mainly on comparing them from two
specific angles (i.e., using real reads with varying qual-
ities and simulated reads from repetitive regions). Thus,
there are a few limitations in the article. First, rather
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than from the whole human genome, both the real data
and the simulated data are from part of it. Second, our
sequencing data sets are only from the Illumina sequen-
cer. Third, we mainly use single-end sequencing data
without considering pair-end data. Fourth, there are many
other great alignment algorithms [2,4-10,12,14,19,20] that
we did not compare. Although this article has these lim-
itations, our approach is very general, and it can be
applied to the pair-end whole genome real and simu-
lated sequencing data as well as data generated from
other platforms. It can also be utilized to study the
performance of other alignment programs with some
minor modifications if necessary.

Conclusions

In order to study how alignment programs perform on
data with varying quality and from repetitive regions, we
have evaluated the performances of four commonly used
alignment programs—SOAP2, Bowtie, BWA, and
Novoalign—on two real NGS data sets and two simu-
lated data sets. Our results show that, for sequencing
data with reads that have relatively good quality or have
had the low quality bases trimmed off, all four alignment
programs perform similarly. We have also demonstrated
that trimming off low quality ends markedly increases
the number of aligned reads and improves the
consistency among different aligners, especially for low
quality data. However, Novoalign is more sensitive to the
improvement of data quality. Trimming off low quality
ends increases the concordance between Novoalign and
the others significantly. Therefore, the quality of sequen-
cing data has a great impact on alignment result, and we
highly recommend assessing sequencing quality first and
then trimming off low quality base if necessary. As for
aligning reads from repetitive regions, our simulation
data shows that reads from repetitive regions tend to be
aligned incorrectly, and suppressing reads with multiple
hits can improve alignment accuracy.
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