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Abstract

Background: Biological insights into group differences, such as disease status, have
been achieved through differential co-expression analysis of microarray data.
Additional understanding of group differences may be achieved by integrating
the connectivity structure of the differential co-expression network and per-gene
differential expression between phenotypic groups. Such a global differential
co-expression network strategy may increase sensitivity to detect gene-gene interactions
(or expression epistasis) that may act as candidates for rewiring susceptibility
co-expression networks.

Methods: We test two methods for inferring Genetic Association Interaction Networks
(GAIN) incorporating both differential co-expression effects and differential expression
effects: a generalized linear model (GLM) regression method with interaction effects
(reGAIN) and a Fisher test method for correlation differences (dcGAIN). We rank the
importance of each gene with complete interaction network centrality (CINC),
which integrates each gene’s differential co-expression effects in the GAIN model
along with each gene’s individual differential expression measure. We compare
these methods with statistical learning methods Relief-F, Random Forests and
Lasso. We also develop a mixture model and permutation approach for determining
significant importance score thresholds for network centralities, Relief-F and Random
Forest. We introduce a novel simulation strategy that generates microarray case–control
data with embedded differential co-expression networks and underlying correlation
structure based on scale-free or Erdos-Renyi (ER) random networks.

Results: Using the network simulation strategy, we find that Relief-F and reGAIN
provide the best balance between detecting interactions and main effects, plus
reGAIN has the ability to adjust for covariates and model quantitative traits. The
dcGAIN approach performs best at finding differential co-expression effects by
design but worst for main effects, and it does not adjust for covariates and is limited to
dichotomous outcomes. When the underlying network is scale free instead of ER, all
interaction network methods have greater power to find differential co-expression
effects. We apply these methods to a public microarray study of the differential immune
response to influenza vaccine, and we identify effects that suggest a role in influenza
vaccine immune response for genes from the PI3K family, which includes genes with
known immunodeficiency function, and KLRG1, which is a known marker of senescence.
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Background
In co-expression analysis, the correlation between pairs of genes is typically combined

into a network model of the correlation structure, which facilitates secondary network

analysis such as community structure or centrality [1]. However, the correlation be-

tween pairs of genes in a co-expression network typically is assumed to be uniform

across all samples (e.g., tissue types, treatment conditions, disease status, etc.). Yet it is

often inter-group differences in correlated data that are of biological or clinical interest.

For example, a gene co-expression network in microarray data for chronic lymphocytic

leukemia using known biomarkers was able to predict treatment outcomes in an inde-

pendent sample [2]. A differential co-expression network approach that leverages the

genetic network information may yield novel biomarkers and improved prediction.

Differential expression methods compute the mean difference between groups for

each gene but typically do not incorporate conditional variation from other genes in

the data that may help explain the between-group variation. Differential co-expression

computes the mean pairwise correlation difference between groups [3]. While the

change in a gene’s expression may influence the phenotype in isolation or have only a

single pairwise interaction with another gene, it is more likely that changes in a gene’s

expression will have a cascading effect with the emergence of multiple differential co-

expression effects due to the underlying biological network structure. In the current

study, we combine differential expression and differential co-expression effects into a

single network model and determine the importance of genes based on a network cen-

trality score that models additional phenotypic variation from gene expression data.

The ability to detect susceptibly hubs in differential gene expression networks de-

pends on the properties of the underlying biological network. For example, scale-free

networks exhibit a power-law distribution and are characterized by having a few hubs

and many nodes with low degree [4]. It is known that the targeted mutation of hubs

(central proteins) in yeast protein-protein interaction networks is more likely to be

lethal than the mutation of low degree (non-central) proteins, which is referred to as

the centrality-lethality rule [5]. A variety of biological networks have displayed evidence

of scale-free behavior, such as metabolic networks [6], protein–protein interaction

networks [7] and transcriptional networks [8].

For a scale-free biological network the probability of a random mutation occurring to

a hub is small relative to non-hubs; thus, hubs may be probabilistically insulated by the

presence of many non-central nodes. Despite this protected status of hubs, there is a

potential for hubs to show a differential co-expression effect without themselves being

mutated. The potential for this side-effect can be understood by noting that random

mutations are more likely to occur to non-hubs, but a mutated non-hub has a high

probability of being connected to a hub and, hence, this hub may show differential

co-expression despite not being mutated.

In previous work we developed a variation of PageRank centrality to find susceptibility

hubs for epistasis network analysis of rare and common variant data [9-11]. We utilized

this centrality with our epistasis network inference method called regression-based

Genetic Association Interaction Network (reGAIN) that combines main effects and epi-

static effects into a network model of a given phenotype. Epistasis is the deviation from

the additive effect of DNA variants, but a similar effect can be observed at the expression

level, where the phenotypic effect of one gene is modified depending on the expression of
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another gene [12,13]. Differential co-expression represents an example of this more

general “expression-epistasis” effect.

Testing on simulated data is important for validating the proposed differential net-

work methods. However, there is a lack of methods to simulate artificial gene expres-

sion data with differential co-expression or expression-epistasis effects while also

including a realistic underlying network structure. Thus, we introduce a network-based

simulation algorithm for constructing artificial gene expression data sets to assess the

ability of statistical methods to identify significant hubs of differential co-expression.

The underlying networks are designed to have degree distributions that may be either

scale-free or Erdos-Renyi (ER) random.

This network simulation strategy, which uses specific degree distributions and ran-

dom disruptions to the correlation within the case group, allows us to address the ef-

fect of the degree distribution on the ability to detect differential co-expression effects,

network transitivity and other network effects. We assess the true and false positive

rates under a variety of simulation conditions. We compare the ability to identify genes

involved in differential co-expression for different edge inference approaches, including

Fisher transformed z-test for differential correlation (dcGAIN) with a t-test on the diag-

onal and the generalized linear regression model (reGAIN).

Unlike statistical inference testing methods based on analytical null-hypothesis distri-

butions, network centrality scores and Relief-F scores lack an analytical null distribu-

tion. Thus, we use permutation and mixture model density estimation to determine

critical values of the centrality scores for null model rejection for genes in the network.

The mixture model concept is similar to approaches for modeling microarray data

p-values as a mixture of null and alternative densities [14,15]. We also use the mixture

model and permutation methods to find statistical thresholds for machine learning

comparison methods Relief-F [12,16] and Random Forest [17] importance scores. To

understand the role of main effects in the network, we include Lasso as a comparison

method [18]. In addition to realistic artificial data, we apply the methods to a seasonal

influenza study with pre- and post-vaccination microarray and antibody response data [19].

Methods
dcGAIN and reGAIN for constructing the interaction network

Prior to centrality analysis for ranking genes, described below, we must construct a

matrix that encodes the statistical interaction or differential co-expression between

genes. There are multiple ways to calculate the statistical interaction between genes in

a genetic association interaction network (GAIN). Here we describe two methods for

constructing the matrix elements of the interaction network.

Regression GAIN (reGAIN) using the generalized linear model

To model differential co-expression between transcripts in reGAIN, we use the generalized

linear model with a full interaction logistic regression model [20]:

1n

 
PrðD ¼ 1 Gi;Gj

�� �
PrðD ¼ 0 Gi;Gj

�� �
!

¼ bb þ biGi þ bjGj þ bijGiGj ð1Þ

The values of the outcome variable D are the case (D = 1) and control (D = 0) status.
The predictor variables are the gene expression levels for genes Gi and Gj. In the
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reGAIN, we use the standardized coefficient for the multiplicative interaction term, bij,

as the off-diagonal elements of the interaction matrix A in the gene centrality calculation

(in Eq. 5). The diagonal elements of the reGAIN matrix are the regression coefficients for

a single-gene model.

Differential co-expression GAIN (dcGAIN) using the Fisher Z-test

To model differential co-expression in dcGAIN, we use the Fisher Z-test [21] by the

following steps. First the correlation is calculated between pairs of genes i and j for sub-

jects within each phenotype group, where the groups again are specified by D = 1

(cases) and D = 0 (controls):

rij
Dð Þ ¼ cov Gi;Gj

� �
σGiσGj

ð2Þ

The within-group correlation values are Fisher z-transformed:
Zij
Dð Þ ¼ 1

2
1n

1þ rij Dð Þ

1−rij Dð Þ

����
���� ð3Þ

Finally the following test statistic is computed for the difference of the z-transformed
correlation between groups D = 1 of size m1 and D = 0 of size m0 for genes i and j:

Zij ¼
Z1
ij−Z

0
ij

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m1−3
þ 1

m0−3

q ð4Þ

For the dcGAIN off-diagonal elements of A in Eq. (5), we use Zij, the Fisher Z-test

for inter-group difference in correlation between genes i and j. For the dcGAIN

diagonal elements of A, we use a t-test for the individual genes.
Interaction network centrality

To compute the importance of genes that show differential co-expression or statistical

interaction effects at the expression level (expression epistasis), we use a generalization

of a centrality approach that we developed for epistasis networks from GWAS data,

called SNPrank [9-11]. Here we briefly discuss the relevant aspects of the method and

modifications for gene expression interaction networks. This algorithm operates on a

network, encoded as a weighted matrix, A, with diagonal terms that correspond to the

main effect association of the gene on the phenotype and off-diagonal terms that cor-

respond to the interaction effect on the phenotype or differential co-expression. The

matrix elements of A are created either with dcGAIN or reGAIN, discussed above, and

then we use the Complete Interaction Network Centrality (CINC) method to calculate

each gene’s importance. “Complete” refers to the inclusion of main effects and interactions.

The CINC works by solving the following system of N equations for the vector R

whose values correspond to the CINC centrality score for the corresponding gene or

transcript i:
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Ri ¼
Aii

N⋅Tr Að Þ þ
1−γ
N

þ γ
XN
j≠i

Aij⋅Rj

kj
; kj≠0

Aii

N⋅Tr Að Þ þ
1
N
; kj ¼ 0 ;

8>>><
>>>:

ð5Þ

where N is the number of genes and A is a weighted matrix of size NxN. For

reGAIN, the diagonal elements of A correspond to main effect estimates from a single

gene logistic model and off-diagonal elements correspond to statistical interactions bij
in Eq. (1). For dcGAIN, off-diagonals are the Zij, the Fisher Z-test for inter-group differ-

ence in correlation between genes i and j, and diagonal elements of A are t-tests for the

individual genes. The Tr(A) is the trace of the A matrix, kj is the jth element of the

weighted degree vector of A (row sums of A), and γ is the so-called damping factor,

which we usually assign the value 0.85 based on simulation studies of epistasis net-

works [11]. The 1/N terms in Eq. 5 give all genes a uniform baseline importance. One

can see from this equation that the importance of gene i depends on its main effect

(Aii) and the linear combination of importance scores of all of its connections (Aij*Rj).

Statistical thresholds for determining significance

A statistical distribution is not known for network centrality scores or Relief-F importance

scores for calculation of statistical significance. Thus, we implement two approaches for

setting statistical thresholds for significant gene associations from the centrality and

importance scores, namely, a permutation approach and a mixture model approach.

Permutation algorithm

The permutation algorithm to determine significance is as follows:

� Compute observed data importance scores for all genes.

� Permute the data class labels mPerm times and accumulate an array of mPerm

scores for each gene.

� Find the 95th percentile score threshold for each gene’s permutation score array.

� Compare the observed score of each gene (unpermuted data) with its permutation

threshold.

� Count the gene as a significant association if the gene’s score exceeds the threshold,

else gene is non-significant

Mixture model algorithm

Due to the computationally intense nature of permutation, we also propose a two-

mode Gaussian mixture model (GMM) clustering approach to the centrality, Relief-F

and Random Forest scores to determine whether a gene’s score comes from the null

density or the alternative density. We assume the density of scores comes from a linear

combination of Gaussian distributions, which we find is a reasonable reflection of the

scores. We use expectation maximization to estimate the parameters for the null and

alternative densities. For each gene’s score, we compute the likelihood that the score

belongs to the null density and the likelihood that the score belongs to the alternative

density. The gene is classified as a significant (or non-significant) depending on
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whether the likelihood for belonging to the alternative is greater (or less) than the null

likelihood.
Network simulation strategy

For this study, we develop a strategy for simulating case–control microarray data with

differentially co-expressed genes and differentially expressed genes (outlined in Figures 1

and 2). The strategy builds a dataset with a baseline correlation network structure

followed by “random attacks” of genes in the disease/cases group to disrupt co-

expression of the attacked genes’ connections. Thus, differential co-expression emerges

through the random disruption of the underlying correlation structure. The first step

involves simulating an initial connectivity, encoded as an undirected adjacency matrix.

This adjacency matrix is the wiring of the healthy control co-expression, and it is the

starting point for rewiring the disease (cases) co-expression. We constrain the initial

adjacency matrix to have one of two degree distributions: scale-free or ER. For the

scale-free simulations, we use the preferential attachment algorithm [4]. While there is

a great deal of evidence for scale-free networks in biology, it is not clear that this is al-

ways the case for co-expression networks. Thus, as an alternative we test network con-

struction and centrality feature selection algorithms for simulated ER networks, which

use a uniform probability to determine whether or not nodes are connected. An ex-

ample of a scale-free network is shown in Figure 1 (step 1) with the corresponding

power-law degree distribution.
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Figure 1 The simulation of gene expression data with differential co-expression network effects
begins with a gene network with given connectivity and degree distribution, such as scale-free
(Step 1). Initially the data set, with N genes and M subjects, has correlation structure that does not differ
between groups (Step 2). A detailed algorithm for Step 2 is given in Figure 2. Briefly, the data set is initialized to a
random Gaussian matrix, and then genes are changed to be proportional to others based on their connections
in the adjacency matrix (Step 1). The strength of the correlation is regulated by a Gaussian (0, noise) variable,
where smaller noise creates stronger correlation between genes. To create differentially co-expressed
genes (Step 3), we arbitrarily split the M columns of data into two groups (cases and controls) and select
random genes for permutation (red x’s) in the cases group. Note that this permutation is distinct from
the permutation used to assess significance. This permutation keeps the simulated group means the
same, so there are no main effects, but disrupts the wiring or correlation in the cases group between the
target gene and the genes it was connected to in the adjacency matrix from Step 1. The co-expression
in the healthy control group is left unchanged, resulting in a complex data set with an embedded differential
co-expression network.



Figure 2 Code for simulating gene expression data set, D, with N genes by M subjects with co-expression
based on a scale-free or other degree distribution (additional details for step 2 in Figure 1). The input
adjacency matrix A specifies the gene-gene correlation structure (from step 1 of Figure 1), and the variable “noise”
determines the strength of the correlation. The data set is initially random Gaussian, and then a loop sets a gene’s
expression proportional to another gene if they are connected according to the adjacency matrix and if the gene
has not been already modified. In a subsequent step (step 3 in Figure 1), differential co-expression is
added between cases and controls.
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For a given set of simulation parameters, we create 100 replicate data sets. The simula-

tion parameters are the number of permuted genes that cause differential co-expression

(n), the total number of genes (N), the sample size (M = cases + controls), the noise

(standard deviation) in the correlation between genes, and fold change. We introduce two

types of randomness for each replicate: noise in the theoretical correlation structure and

the genes selected for permutation. For the total number of genes we use N = 100. Thus,

in practice, we assume filtering is performed agnostic to outcome such as low value and

low variance. We consider sample sizes (M= cases + controls) from the relatively small 20

(10 cases and 10 controls) to the more moderate M = 40 samples. The amount of Gaussian

noise (standard deviation) added to correlated genes ranges from .05 (strong correlation)

to 3 (weak correlation). We also generate simulations that contain differential expression

(main effects) with fold change up to 2-fold. A standard deviation of the gene intensity

measurements on the base-two logarithmic scale value of 0.7 is realistic for genes that are

expressed at moderate to high levels [22].

Performance metrics

For simulated data with N total genes and n perturbed genes, we define the true posi-

tive rate (TPR) as the number of genes with centrality scores assigned to the high

GMM mode that were also perturbed (true positives) divided by the total number of

perturbed genes (m positives). Similarly we define the false positive rate (FPR) as the

number of genes with centrality scores assigned to the high GMM mode that were

unperturbed in the simulated data (false positives) divided by the total number of genes

that were unperturbed (N-n). Performance evaluation works similarly for the permuta-

tion test approach for identifying significant centrality weights.
Microarray data

We apply Relief-F, Lasso, dcGAIN and reGAIN network construction with CINC to a

publicly available influenza vaccine dataset (GEO: GSE29619). We adjust for sex in the

reGAIN models, which cannot be done easily with the other methods. In this study, 28
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healthy adults were vaccinated during the 2008 influenza season with trivalent inacti-

vated influenza vaccine (TIV) while measuring gene expression levels before and 7 days

after vaccination [19]. Antibody titers against the influenza virus were recorded before

and 28 days after vaccination. For our statistical analyses, we employed the day 7 versus

baseline gene expression change as the predictors and high and low antibody titers at

day 28 as the phenotype as defined in Ref. [19]. Similar to the goal of the original study,

our application seeks to identify genetic effectors associated with differential immune

response. However, while the previous study only analyzed the individual effects of gene

expression on the antibody titer phenotype, our combined network approach accounts

for both individual and interactive effects when prioritizing genetic effects.
Results
Simulation analysis

The main goal of this study is to test the performance of methods to identify genes that

are involved in changes in co-expression between groups. Thus, we compare the true

positive rates (TPR) and false positive rates (FPR) for detecting the 10% of genes that

were targeted in the simulated differential co-expression data. The models include vary-

ing amounts of network correlation noise (standard deviation) and either 20 or 40 sam-

ples (balanced cases and controls). We calculated the TPR and FPR for each method

across 100 replicates for each model. For scale-free differential network simulations

and the permutation method for assessing significance (Figure 3), we find the following

TPR order (highest to lowest): dcGAIN + CINC, Relief-F, reGAIN + CINC, Random

Forest and Lasso. The FPR for all methods are very low for all methods using permuta-

tion (Figure 3). When using GMM to determine significance (Figure 4), we find higher

TPR for all methods with the same relative order as with permutation. However, per-

mutation has the advantage of lower FPR compared with the GMM. For simulated ER

networks, the methods have lower TPR than their analysis of scale-free differential co-

expression networks but also slightly lower FPR (Figures 5 and 6). Lasso has very low

TPR for all differential network simulations because the Lasso only includes main effect

terms.

In addition to differential co-expression effects, we expect many genes to show individ-

ual (main effect) differential expression between groups. Thus, we compare the TPR and

FPR of the panel of methods to detect main effects. The simulations are similar to the dif-

ferential co-expression simulations but instead of varying the correlation noise, we

increase the effect size of the 10% of main effect genes up to 2-fold. For the permutation

testing to determine significance (Figure 7), we find the order of TPR performance is

Relief-F, Random Forest, reGAIN+ CINC, Lasso, and dcGAIN +CINC. The main effect

TPRs for all methods are similar with the exception of dcGAIN+CINC, which is dis-

tinctly lower than the others. Using GMM for significance in the main effect simulations

(Figure 8), the TPRs are higher than the permutation testing approach (Figure 7) but

follow the same trend. As is the case for the interaction simulations with GMM and

permutation (Figures 3 and 4), the main effect simulations with GMM tend to have higher

FPR (Figure 8) than permutation testing (Figure 7). While dcGAIN+CINC performs best

for the interaction simulations, it performs worst for main effects. Relief-F shows the best

overall performance at detecting both main effects and interaction effects. As with
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Figure 3 Comparison of true positive and false positive rates to detect the 10% of genes involved in
differential co-expression in Scale-Free networks in 100 replicate simulated data sets for increasing
correlation noise (standard deviation) in the network. True positive rates are on top panels and false
positive rates are on bottom panels. Sample sizes are M = 20 (left panels) and M = 40 (right panels). We use
permutation testing to determine the significance thresholds for Relief-F, Random Forest, reGAIN plus CINC
and dcGAIN plus CINC.

Lareau et al. BioData Mining  (2015) 8:5 Page 9 of 17
interaction simulations, these methods show higher TPR when using GMM, but permuta-

tion has the advantage of lower FPR. For computational expediency, we simulate only 100

genes with 10 target genes for each replicate because we create 100 replicate data sets for

each simulation scenario and we use permutation testing in many cases (Figures 3, 5 and 7).

However, we show for real data that all probes can be analyzed, though in practice filtering

is recommended.
Microarray analysis of differential immune response to influenza vaccine

We apply the feature selection methods reGAIN + CINC, dcGAIN + CINC, Relief-F

and Lasso to a publicly available influenza vaccine dataset (GEO: GSE29619), results in

Additional file 1: Table S1. For the interaction network based methods, we first filter

the gene expression probes to the top 5,000 probes based on univariate regression

p-values, though genes with no univariate effect could be implicated through only

interactive effects. Since this filter is not aggressive, we do not cross validate this step

even though it was not agnostic to outcome. After filtering the original probes, we

apply dcGAIN and reGAIN to the 5,000 remaining transcripts. After each network was

constructed, we apply the CINC centrality method to identify the most significant hubs

and other effects in each network.

Significant genes for reGAIN +CINC and Relief-F show enrichment of PI3K-related

pathways. Reactome pathways enriched in Relief-F and reGAIN include “Genes involved
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Figure 4 Comparison of true positive and false positive rates to detect the 10% of genes involved
in differential co-expression in scale-free networks in 100 replicate simulated data sets for increasing
correlation noise (standard deviation) in the network. True positive rates are on top panels and false
positive rates are on bottom panels. Sample sizes are M = 20 (left panels) and M = 40 (right panels). We use
Gaussian mixture modeling (GMM) to determine the significance thresholds for Relief-F, Random Forest,
reGAIN plus CINC and dcGAIN plus CINC.
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in Negative regulation of the PI3K/AKT network” (6.3e-4) and “Genes involved in PI3K

cascade” (1.72e-3). The specific genes found include PIK3R5 and AKT3 – found by both

reGAIN and Relief-F – and PTEN and FGF23, found by Relief-F only. The PIK3R5 gene

was also selected by Lasso but not dcGAIN, indicating a consensus among methods for

the main effect of this gene. This PI3K pathway signature is biologically relevant to differ-

ences in influenza vaccine immune response because loci in the PIK3CD gene are associ-

ated with an immunodeficiency syndrome that presents with recurrent respiratory

infection, increased circulating transitional B cells, and impaired vaccine response. A

recent study found a gain-of-function rare variant (nonsynonymous) in PIK3CD for the

syndrome and increased levels of phosphorylated AKT protein from patient-derived

lymphocytes [23].

Differential co-expression hub analysis (Figure 9) reveals that PIK3CD has a strong

negative hub effect but very low main effect on immune response. This type of epista-

sis analysis tool is similar to that used for visualizing interaction effects from double

mutant strains of yeast [24]. A negative interaction for the vaccine immune response

outcome represents a joint effect that leads to decreased immune response to the vac-

cine. A negative hub is a gene whose sum of negative interactions outweighs its posi-

tive interactions; such genes fall below the null line (Figure 9). In addition to global

interaction effects, the positive/negative hub plot also includes main effect information

based on size and color of the plot symbol. For example, PIK3CD, which has been

shown to affect immune response to vaccination, displays an important effect as a
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Figure 5 Comparison of true positive and false positive rates to detect the 10% of genes involved
in differential co-expression in Erdos-Renyi networks in 100 replicate simulated data sets for
increasing correlation noise (standard deviation) in the network. True positive rates are on top
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(right panels). We determine the significance thresholds for Relief-F, Random Forest, reGAIN centrality
and dcGAIN centrality with permutation testing.
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negative differential co-expression hub. However, PIK3CD has a negligible effect by

univariate analysis of this microarray study, indicated by the small plot symbol for

the gene.

Our simulation results show that dcGAIN was the highest performer at finding interac-

tions but worst at finding main effects. This is corroborated in the data analysis in which

the dcGAIN+CINC results have the smallest intersection of genes with Lasso (only 1 out

of 17 genes). Whereas Relief-F find 13/17 and reGAIN+CINC find 5/17 main effect

genes. Thus, many of the genes for differential immune response to influenza vaccine

found by dcGAIN are likely due to substantial interaction effects.

For example, one of the dcGAIN hubs is the killer cell lectin-like receptor G1

(KLRG1), which has been used to define populations of senescent effector CD8 T cells

in mice and humans [25]. Additionally, influenza virus-specific CD8 T cells showed a

decrease in functionality corresponding to increases in KLRG1 [26]. Moreover, another

interaction hub identified by the dcGAIN + CINC approach was the cyclin-dependent

kinase 13 (CDK13) gene, which has been linked to increase viral production [27]. Taken

together, these observations indicate that a differential correlation network structure

has the power to uncover biological effectors that implicate both general and specific

immune processes that other statistical methods do not uncovered. In addition to the

PI3K pathway, the novel link to general viral regulator gene (CDK13) and a specific

influenza T cell gene using transcriptomics (KLRG1) demonstrate the utility of our

proposed framework.
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Figure 6 Comparison of true positive and false positive rates to detect the 10% of genes involved
in differential co-expression in Erdos-Renyi networks in 100 replicate simulated data sets for
increasing correlation noise (standard deviation) in the network. True positive rates are on top
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panels). We determine the significance thresholds for Relief-F, Random Forest, reGAIN centrality and dcGAIN
centrality with Gaussian mixture modeling (GMM).
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Discussion
Most gene expression analyses focus on identifying genes or sets of genes that show

differential expression between phenotypes based on a univariate statistic. However, the

co-expression between two genes may be conditional on the phenotypic or biological

context. In other words, pairs of genes may be differentially co-expressed, whereby the

wiring between two genes in a healthy or homeostatic network switches or is disrupted

in a disease or perturbed network. Furthermore, influential gene hubs that discriminate

between phenotype may be identified through the agglomeration of the univariate and

pair-wise interactions in a condition specific gene network model. We used two

methods for estimating the edges in these genetic association interaction networks

(GAIN): Fisher z-test for differential correlation (dcGAIN) and a GLM regression

model approach with gene-gene interaction terms (reGAIN). We applied our inter-

action network centrality algorithm (CINC, Eq. 5, a generalization of SNPrank for

GWAS) to identify important susceptibility hubs and candidate genes for network

rewiring. In addition, we compared network feature selection methods with Relief-F,

Random Forests, and Lasso.

In order to assess the effects of correlation structure in a controlled way, we introduced

a differential co-expression network simulation strategy that incorporated realistic net-

work structures such as scale-free and ER, and we used random mutation to induce differ-

ential co-expression. As expected, Lasso was unable to detect the simulated differential

co-expression effects because we did not include interactions in the Lasso. The other
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Figure 7 Comparison of true positive and false positive rates to detect the 10% of main effect
genes for different fold changes in 100 replicate simulated data sets. In each plot, the fold change
increases from left to right. True positive rates are on top panels and false positive rates are on bottom panels.
Sample sizes are M = 20 (left panels) and M = 40 (right panels). We determine the statistical thresholds for
Relief-F, Random Forest, reGAIN + CINC and dcGAIN + CINC centrality with permutation testing.
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methods, which model conditional dependence between genes, tended to have greater

power to detect susceptibility genes in the scale-free networks compared with ER. For

reGAIN and dcGAIN, this increased power in scale-free networks is partly attributable to

CINC centrality; centralities are sensitive to hub effects, and scale-free networks are char-

acterized by hubs, whereas nodes in ER networks have uniform degree on average.

Regardless of the underlying network degree distribution, dcGAIN had the highest power

to detect the differential co-expression effects, followed by reGAIN and Relief-F – which

had very similar performance – and finally Random Forest had the lowest power. We have

shown previously that Random Forest is limited in its ability to find gene-gene interac-

tions [28]; however, it performed reasonably well in these interaction simulations because

we limited the number of simulated background genes.

Although our motivation for using network and machine learning approaches was to

detect additional variation due to interaction effects, for completeness we also tested

these approaches on main effect simulations. While dcGAIN performed best for differ-

ential co-expression interactions, it had the lowest power and highest false positive rate

than the other methods for main effects. The test statistics for differential correlation

on the off-diagonal tended to be larger than the test statistics for the main effect tests

on the diagonal in these simulations, even in the absence of differential correlation. It

may be that the larger number of off-diagonal differential correlation terms (n (n-1)/2

of them) masks the smaller number of main effect terms (n of them) in the CINC statistic.

This discrepancy between dcGAIN interaction and main effect detection perhaps may be
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plus CINC.
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addressed by bringing dcGAIN into a regression framework. The main effects pose less

difficulty for reGAIN, which uses regression coefficients for the diagonal and off diagonal.

Relief-F performs best for main effect simulations, which, coupled with its relatively good

performance on interactions, suggests Relief-F is a good all-purpose filter.

One of the challenges for model-free feature selection methods, like network centrali-

ties or Relief-F, is determining the statistical significance of feature scores. Thus, we

introduced two methods to assess the statistical significance of the CINC centrality

scores for dcGAIN and reGAIN and for Relief-F and Random Forest importance

scores: a mixture model approach and permutation testing. The mixture model ap-

proach tends to give greater power and greater computational speed, but at the expense

of more false positives than the permutation approach. On a related note, we do not

use permutation when calculating the GLM interaction models of reGAIN, but instead

we use the usual p-values and standardized beta coefficients. It has been shown for gen-

etic data that permutation must be implemented carefully to handle the simultaneous

interaction and main effect null hypotheses [29].

The Fisher z-test used in dcGAIN is designed to find correlation differences between

groups, which made it better than reGAIN at finding the differential co-expression effects

constructed in our simulations. However, the GLM framework used by reGAIN can be used

for quantitative traits and any phenotype that can be modeled with an exponential family

distribution, including time-to-event phenotypes. Further, the GLM framework can adjust

for covariates, like sex, which is known to affect immune response. Thus, reGAIN+CINC
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provides more modeling flexibility plus it balances interaction and main effects better than

dcGAIN.

Our application of these interaction network methods to a microarray study of the

differential immune response to influenza vaccine found novel markers that are

missed by main effect analysis. From our network centrality and machine learning

analysis, we identified PI3K related genes, which have been previously demonstrated

to be effectors in human immune responses [23] but would be missed by a univariate

analysis of the influenza vaccine microarray study. Similarly, we found a differential

co-expression network effect for the KLRG1 gene, which plays a role in immunose-

nescence in influenza virus specific CD8 T cells [26], and the CDK13 gene, which is

associated with viral production [27], but a conventional differential expression ana-

lysis does not identify these genes as an effector. Ultimately, our findings implicate

novel effectors in viral activity and validate previously identified influenza effects

through transcriptomics analyses. The identification of these biomarkers combined

with our simulated results demonstrate the advantages of using machine learning and

differential co-expression network centrality to augment univariate approaches to

identify functional effectors in microarray data.
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Additional file 1: Table S1. Significant genes for high versus low HAI in baseline versus day-7 gene expression
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