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Abstract

Background: Detecting the differences in gene expression data is important for
understanding the underlying molecular mechanisms. Although the differentially
expressed genes are a large component, differences in correlation are becoming an
interesting approach to achieving deeper insights. However, diverse metrics have
been used to detect differential correlation, making selection and use of a single
metric difficult. In addition, available implementations are metric-specific, complicating
their use in different contexts. Moreover, because the analyses in the literature have
been performed on real data, there are uncertainties regarding the performance of
metrics and procedures.

Results: In this work, we compare four novel and two previously proposed metrics to
detect differential correlations. We generated well-controlled datasets into which
differences in correlations were carefully introduced by controlled multivariate
normal correlation networks and addition of noise. The comparisons were performed
on three datasets derived from real tumor data. Our results show that metrics differ in
their detection performance and computational time. No single metric was the best in
all datasets, but trends show that three metrics are highly correlated and are very good
candidates for real data analysis. In contrast, other metrics proposed in the literature
seem to show low performance and different detections. Overall, our results suggest
that metrics that do not filter correlations perform better. We also show an additional
analysis of TCGA breast cancer subtypes.

Conclusions: We show a methodology to generate controlled datasets for the objective
evaluation of differential correlation pipelines, and compare the performance of several
metrics. We implemented in R a package called DifCoNet that can provide easy-to-use
functions for differential correlation analyses.
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Background
Differential expression is one of the most important tools to study variations in the

behavior of cells between tissues, species, and diseases [1–3]. This is not only highly

intuitive but is also suitable for testing in the laboratory by turning specific genes on

or off. However, a plethora of methods have shown that differential expression alone is

unable to characterize some observed phenotypes [2, 4]. This may be caused by

genetic, environmental, demographic, and technical factors [5]. In addition, differential

expression ignores that genes operate in coordination with other genes in interconnected

and regulated networks [6]. Therefore, some methods to detect alterations in gene
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expression networks have been proposed [7–16]. These methods can be classified

based on the type of detection made: (i) differential expressed networks, (ii) differential

gene-gene connections, and (iii) differential co-expressed genes. For differential expressed

networks, the main idea is the detection of differential scores, which are calculated from

sets of genes using several metrics such as principal components [7] and t-test-like scores

[8]. The sets of genes can represent networks, pathways, or common properties such as

ontologies. Nevertheless, these approaches focus on pre-defined networks instead of

detecting specific genes, making it difficult to translate results to testable assays in the

laboratory. For the second type of detection, which focuses on differential gene-gene con-

nections, the core idea is to detect pairs of genes that seem ‘connected’ in one condition

and ‘not connected’ in another condition, where the ‘connection’ is usually established by

correlation thresholding [11]. As with the first approach, the study of specific gene-gene

connections is difficult because assays turning on or off one of the genes would inevitably

disrupt other connections, and thus it is difficult to study specific connections in the

laboratory. For the last type of detection, differential co-expressed genes, the central

concept is the detection of genes whose co-expressed genes differ between experimental

conditions [15, 16]. Similar to previous methods, co-expression is commonly defined by

correlations above a particular threshold. In this context, either all possible connections of

a gene can be analyzed or only those connections that are highly correlated. This type of

detection focuses on the gene rather than on a specific network or a connection, as is the

case with the previous approaches. This has the advantage of the ability to detect altered

genes, which can be easily tested in the laboratory independently, whether the network is

known or not.

For the above practical reasons, in this paper, we will focus on differential co-expressed

genes. To date, there are some implementations of this concept [15, 16]. In general, the

core idea of detecting genes whose correlations are altered between conditions is main-

tained between methods. Nevertheless, the published methods mainly differ in the imple-

mentation of the metric used to detect the altered genes. For example, one method

focuses only on differential connections for gene i estimating ΔCi = |di0-di1|, where dix is

the number of co-expressed genes above a correlation threshold in each condition [16];

another method considers all correlations using ΔCi = sum(sqrt(|sign(Ai,j)*Ai,j
2 -sign(-

Bi,j)*Bi,j
2 |)ß), where Ai,j and Bi,j represent the correlation coefficients for gene i with all

genes j under the A and B experimental conditions, sqrt is the square root function, ß

weights for large correlation differences, and the sum function sums over all j genes [15].

Moreover, although other metrics have been proposed for differential networks instead of

differential co-expression such as in CoXpress [8], one may ask whether those metrics are

more effective. Indeed, we may propose other metrics to evaluate the difference of co-

expressed genes. However, it is uncertain which metric could be the best to detect differ-

ential co-expression networks because they have been applied only to specific datasets. In

addition, some published packages such as DiffCorr [17] and DiffCoEx [15] do not allow

the evaluation of other metrics.

Therefore, in this paper, we aim to objectively compare the performance of different

metrics under a well-controlled environment and to make available a framework to

evaluate other possible metrics. We compared two metrics already used and published

in scientific articles that evaluate differential co-expression, but we also propose four

novel metrics and generalize a framework for future metrics. Previous applications of
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differential co-expression focus on normal and tumor data [16]. Instead, to demonstrate

an additional application of our framework, we show a basic analysis on breast cancer

subtypes from The Cancer Genome Atlas (TCGA). The implemented R package,

DifCoNet, is available on CRAN.

Methods
Evaluated metrics

The overall goal is to determine the level of alteration of the co-expressed genes between

two conditions. These alterations represent functional changes in the operational network.

The level of co-expression is estimated using Spearman correlation. To quantify the over-

all level of alteration per gene, a variety of metrics have been used [15, 16, 18–21] . Besides

these, we are exploring some others that could be potentially useful. In general, we con-

sider two experimental conditions A and B where the gene expression level of n genes has

been measured.

Metric 1: Difference in the number of correlations. Under the assumption that

low correlation values are due to random chance, it has been proposed that

M1i ¼ j#ai−#bij

where #ai and #bi are the number of correlations of gene i higher than th1 in their

corresponding A and B conditions [16, 21].

Metric 2: Kolmogorov–Smirnov distance. The Kolmogorov–Smirnov test is a com-

mon non-parametric statistical procedure to determine whether two probability distri-

butions differ significantly [18]. It measures the greatest distance D between the

empirical cumulative distributions. Because the vector of all correlations of gene i will

generate a probability distribution,

M2i ¼ max
1≤k≤n

jFðaiÞk−FðbiÞk j

where ai and bi are the correlation vectors of gene i in corresponding conditions, and

F() is the empirical cumulative distribution function.

Metric 3: Sum of large correlations differences. M1 assumes that small correlations

are random; instead, we can consider small differences in correlations as random, thus,

M3i ¼
X
k¼1

n

ðjai;k−bi;k j > th3Þ

Metric 4: Euclidean distance. All the metrics above select specific correlations,

which may potentially result in losing information; thus, a metric that uses all informa-

tion such as the Euclidean distance could be powerful. We used a scaled version of the

Euclidean distance to make the metric independent of the number of genes used:

M4i ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðai;k−bi;kÞ2
s

Metric 5: Kullback–Leibler divergence. In information theory, the Kullback–Leibler

divergence is a measure of the difference between two probability distributions [19].

However, it is directional; thus, we used the sum of the two directions, similar to the

Jensen–Shannon divergence [20], using
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M5i ¼
X
k¼1

n
Pðai;kÞlog Pðai;kÞPðai;kÞ þ

X
k¼1

n
Pðbi;kÞlog Pðbi;kÞPðbi;kÞ

where P() is the probability function (zero probabilities are commonly ignored).

Metric 6: Adjacency difference. This metric was adapted from the DiffCoEx algorithm

originally used to compute a matrix of adjacency differences [15]. It uses a β parameter to

weight large correlation differences as.

M6i ¼
X
k¼1

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðjsignðai;kÞðai;kÞ2−signðbi;kÞðbi;kÞ2jÞ

r !β

Here, we used β = 2.5.

Development of controlled data

Experimental datasets may contain many differentially expressed genes, which introduces

fluctuations that alter its correlations to other genes. In addition, the observed differential

co-expression of experimental datasets is unknown and will inevitably be dependent on

the metric used for detection. Therefore, a well-controlled simulated dataset is needed to

evaluate the performance of the metrics. It is desired that simulated data maintains the

complexity of the experimental data without being affected by intrinsic characteristics

while still being capable of carrying the desired properties under study. Therefore, we will

use gene expression data from normal tissues to generate artificial cancer progression

stages by adding independent Gaussian noise at the gene level. In this way, the generated

dataset will maintain the internal correlation structure but will not show differential

expression [21]. Nevertheless, noise addition will reduce correlations, so we also used a

second procedure to generate networks at the desired correlations levels. These proce-

dures are described next and are summarized in Fig. 1. First, we selected 3000 randomly

chosen genes from a gene expression dataset containing normal and tumor samples and

standardized each subset (mean = 0 and standard deviation = 1 per gene). Second, we

estimated the Gaussian noise level s that needs to be added to the normal data that resem-

bles the correlation distribution of the tumor samples. Third, from the 3000 genes, we

used 300 as positive noised genes, depending on the noise level s, to generate genes in

tumor stages T1, T2, and T3 as follows: T1 = Normal + N(0, s/3), T2 = T1 + N(0, s/3),

and T3 = T2 + N(0, s/3), where N(m, sd) is the normal function having mean m and

standard deviation sd. Fourth, the remaining 2700 genes were used as negative noised

genes, to which we added noise at a lower level to maintain variability as follows:

T1 = Normal + N(0, s/10), T2 = T1 + N(0, s/10), and T3 = T2 + N(0, s/10). So far, the

correlation structure of positive genes will resemble that of an observed tumor data-

set, while the correlation structure of negative genes will be clearly less, similar help-

ing to distinguish between both types of genes. Five, we added 200 additional genes

arranged in 20 networks of 10 genes. Half of these networks were set to increase and

the rest were set to decrease their correlation levels compared to normal data. For

this, the R package mvtnorm was used [22]. This package generates multivariate ran-

dom Gaussian datasets that follow a correlation structure from a given covariance

matrix. Thus, for the networks, the covariance matrix M was defined as Mi,j = v for i

<> j and Mi,j = 1 for i = j. For the normal dataset, the following values of v were used:

{0.9, 0.75, 0.6, 0.45, 0.3}. Then, for the networks losing correlations in the artificial
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tumor stages, the correlations were set to T1 = v − 0.05, T2 = v − 0.1, and

T3 = v − 0.15. Two networks of 10 genes were generated for each value of v. Simi-

larly, to generate the networks that gain correlations, the v values used were {0.15,

0.30, 0.45, 0.60, 0.75} for the normal dataset, and the tumor stages were defined as

T1 = v + 0.05, T2 = v + 0.1, and T3 = v + 0.15. We have used similar strategies to

study physiological responses in biological networks [23].

Fig. 1 Generation of controlled datasets. The final dataset of 3200 genes contain 500 genes having altered
correlations at different levels. From these, 300 of these genes gradually lose their correlations by adding
noise (step 2). Also, 100 genes gradually increase their correlations (step 3 “Gaining Correlations”) while
other 100 decrease their correlations (step 3 “Losing Correlations”). In this way, the dataset generated
should not contain differential expressed genes
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Estimation of statistical significance

A permutation-based approach is used to estimate the null distribution of the metric

employed in the analysis [24, 25]. The p-value for a given gene is defined as the propor-

tion of permutated metrics larger than the observed metric. When more than two condi-

tions are analyzed, pairwise metric and p-value estimations are performed and the Fisher’s

combined probability test is used to estimate an overall p-value. Finally, a false discovery

rate approach is used to correct for multiple tests [26].

Datasets

To compare the performance of the metrics, we used three cancer datasets from the

Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information

(NCBI) containing at least normal and cancer samples and more than 60 samples in each

group. The datasets chosen were GSE19804, GSE44076, and GSE25097 related to lung,

colon, and liver cancer, respectively. The number of samples per group was 60, 96, and

243 (tumor and paired normal samples). For the metric comparisons, only normal data

(standardized by gene) were used to generate controlled datasets. For this, the value of s

was empirically estimated by testing a range of s values; the value whose correlation distri-

bution most resembled the tumor correlation distribution was used. To show the applica-

tion of our framework, we used the breast cancer dataset from TCGA to analyze the

differences in correlations across molecular subtypes.

Package implementation

We implemented DifCoNet (DIFferential COexpression NETworks) in R, which is avail-

able in CRAN (https://cran.r-project.org/). Thus, the package can be easily installed using

the install.packages(“difconet”) instruction in the R command line. The six metrics shown

above are already implemented in DifCoNet. A user function receiving the correlation vec-

tors of the two conditions can be specified to compute a distance metric not yet imple-

mented. The main methods implemented in the DifCoNet package are related to (i)

running the pipeline for estimating the differential co-expressed networks for a given

dataset and corresponding parameters, (ii) displaying figures representing the differences

in correlations (similar to those shown in Fig. 2), and (iii) generating a controlled dataset

from a “normal” dataset (such as those used here). For this, the R functions run.difconet,

plot.gene.correlations, and build.controlled.dataset are the corresponding functions imple-

mented in DifCoNet.

Results
Validation of controlled datasets

Given that it is unknown which genes are differentially correlated in experimental datasets,

it is necessary to begin with a dataset where negative and positive genes are well defined

while still representing real biological scenarios. For this, we designed a computational pro-

cedure to generate controlled datasets containing specific changes in correlations based on

a non-tumor dataset (Fig. 1). These datasets consist of a simulation of tumor progression

starting with normal tissue data followed by a progression through three tumor stages (T1,

T2, and T3). The last stage should contain the largest alterations in correlations whose over-

all correlation distribution is highly similar to the observed correlation distribution in the
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original tumor dataset. These datasets consisted of 3200 genes, including 200 genes that

were generated by full-connected networks (considered positive) and 3000 genes that were

randomly chosen from the normal tissue dataset, including 300 genes with higher levels of

noise (also considered positive). All gene expression profiles were derived from a gene-

standardized transformation of the normal data, and thus all genes should have mean and

standard deviation equal to 0 and 1, respectively. By design, these controlled datasets should

not contain differentially expressed genes. This was confirmed by a t-test, where no genes

were called differentially expressed at FDR < 0.1.

To validate the generated datasets, we visually compared the correlations of putative

positive and negative genes between the original normal dataset and the last tumor

stage (T3). As shown in Fig. 2a, the difference in correlations is larger for a positive

controlled gene than for a negative gene. These difference are also clear when comparing

Fig. 2 Validation of the controlled dataset. Panel a shows a comparison of all correlations of in normal
versus tumor (stage T3) where differences in correlation are represented by colors codes as shown at right. Left
and right show the differences in a negative gene and a positive gene respectively. Panel b shows the distribution
of correlations of a representative negative and positive gene. Panel c shows a representation of distributions for
negative and the two types of positive genes (by noise addition or network injection). Genes are shown
in the vertical axis whereas the density of the distribution is represented by colors across correlation
levels in the horizontal axis. For example, low density regions of the distribution, typically at both tails,
are represented in dark green whereas high density regions are shown in yellow and red, typically close
to 0. The arrows point to visible changes between normal and tumor T3
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the distribution of correlations (Fig. 2b). Then, to generalize the visual comparison of several

negative and positive genes at once, a heat map representation was used to summarize the

correlation distributions (Fig. 2c). It is evident that positive genes have large alterations in

the correlation distribution than do negative genes. Both types of putative positive genes are

visible (generated by noise addition or network injection). These results show that con-

trolled datasets seem to have clear alterations in the correlations of positive genes and

scarce and random variations in negative genes. Therefore, these datasets can be used to

compare the performance of different metrics for the detection of differentially correlated

genes at different levels of alteration.

Comparison of performance

To compare the six metrics while avoiding dataset-specific effects, we used three available

lung, colon, and liver cancer datasets having a varied number of samples and gene expres-

sion platforms. In summary, the datasets contain normal genes, T1, T2, and T3 tumor

stages, and 3200 genes of which 2700 should be negative genes and 500 should represent

positive genes. The level of “positiveness” is low in T1, medium in T2, and high in T3.

The details are described in the previous section and in the methods. We assessed all pos-

sible comparisons between normal and tumor stages. For the metrics that require a

threshold (M1 and M3), we used 0.1, 0.3, and 0.5, adding the threshold value to the metric

label. As a measure of performance, we counted the number of putative positive genes

found in the top 500 genes ranked by the higher values of each metric.

The detailed results are shown in Tables 1, 2, and 3 for the lung, liver, and colon

derived datasets.

The maximum sensitivity reached was dependent on the dataset. We observed 0.81,

0.64, and 0.83 for lung, liver, and colon, respectively. For comparisons, we focus on the

relative sensitivity, which was estimated by the percentage of detection relative to the

maximum sensitivity observed in all metrics (Fig. 3). None of the metrics was the best

in all datasets. The best overall performance was obtained by M5, but the differences

between close competitors are very small (M4 and M6), and there were variations

across datasets. We noted that the performance of M1 and M3 was the best when

using lower thresholds, indicating that using more information (in lower thresholds) is

Table 1 Observed positive genes from the Lung-based controlled dataset

Stages M1.1 M1.3 M1.5 M2 M3.1 M3.3 M3.5 M4 M5 M6

N-T1 256 221 106 320 315 235 223 340 346 412

T1-T2 263 216 95 316 319 228 208 343 343 399

T2-T3 269 235 102 321 311 231 216 336 335 405

Sensitivity at 33% 0.53 0.45 0.2 0.64 0.63 0.46 0.43 0.68 0.68 0.81

N-T2 275 223 111 329 439 231 214 405 407 404

T1-T3 270 223 106 337 439 228 214 398 398 411

Sensitivity at 66% 0.55 0.45 0.22 0.67 0.88 0.46 0.43 0.80 0.81 0.82

N-T3 284 234 113 336 455 231 209 433 433 406

Sensitivity at 100% 0.57 0.47 0.23 0.67 0.91 0.46 0.42 0.87 0.87 0.81

Global Sensitivity 0.54 0.45 0.21 0.65 0.76 0.46 0.43 0.75 0.75 0.81

Relative Sensitivity 0.67 0.56 0.26 0.80 0.94 0.57 0.53 0.93 0.93 1.00

Sensitivity is shown in italics. Bold marks top values
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better than less information (in higher thresholds). This supports the use of metrics

that consider all available information. Overall, we observed that M4, M5, and M6

obtained similar and higher performances than M1, M2, and M3.

In this analysis, we also measured the sensitivity of all metrics during simulated

tumor progression. That is, in our simulations, T1 carries only around 33% of the accu-

mulated injected alterations, whereas T2 carries an accumulated 66%, and T3 reaches

100%. We noted that most of the metrics were also consistent across these increasing

alterations. For example, in the lung dataset (Table 1), M4 reached 0.68 when detecting

33% of injected alterations (in T1), then increased to 0.80 for 66% of alterations (in

T2), and then increased to 0.87 for 100% of the alterations (in T3). Similar behavior

was observed across datasets and metrics, except for M6. For M6, the differences in

performance between 33%, 66%, and 100% of the accumulated alterations were very

small, indicating that M6 has more potential to detect subtle alterations than the other

metrics.

We observed clear database effects. For instance, in the liver dataset, none of the

metrics reached 70% global sensitivity, whereas, in the lung dataset, four metrics

Table 2 Observed positive genes from the Liver-based controlled dataset

Stages M1.1 M1.3 M1.5 M2 M3.1 M3.3 M3.5 M4 M5 M6

N-T1 265 117 90 287 260 230 55 312 309 313

T1-T2 264 118 111 295 255 231 56 303 304 321

T2-T3 254 112 88 290 247 224 61 296 298 311

Sensitivity at 33% 0.52 0.23 0.19 0.58 0.51 0.46 0.11 0.61 0.61 0.63

N-T2 266 135 105 300 279 228 60 317 326 321

T1-T3 274 133 113 296 280 221 59 328 332 322

Sensitivity at 66% 0.54 0.27 0.22 0.6 0.56 0.45 0.12 0.65 0.66 0.64

N-T3 260 144 96 289 308 235 57 329 337 316

Sensitivity at 100% 0.52 0.29 0.19 0.58 0.62 0.47 0.11 0.66 0.67 0.63

Global Sensitivity 0.53 0.25 0.2 0.59 0.54 0.46 0.12 0.63 0.64 0.63

Relative Sensitivity 0.83 0.39 0.31 0.92 0.84 0.72 0.19 0.98 1.00 0.98

Sensitivity is shown in italics. Bold marks top values

Table 3 Observed positive genes from the Colon-based controlled dataset

Stages M1.1 M1.3 M1.5 M2 M3.1 M3.3 M3.5 M4 M5 M6

N-T1 284 140 89 328 347 229 156 401 401 350

T1-T2 290 125 71 331 333 228 157 403 406 346

T2-T3 264 125 69 307 302 235 149 377 374 344

Sensitivity at 33% 0.56 0.26 0.15 0.64 0.65 0.46 0.31 0.79 0.79 0.69

N-T2 302 137 89 346 448 237 150 438 437 350

T1-T3 283 129 71 323 444 222 154 430 427 343

Sensitivity at 66% 0.59 0.27 0.16 0.67 0.89 0.46 0.3 0.87 0.86 0.69

N-T3 307 139 87 354 448 236 163 448 450 348

Sensitivity at 100% 0.61 0.28 0.17 0.71 0.90 0.47 0.33 0.90 0.90 0.70

Global Sensitivity 0.58 0.27 0.16 0.66 0.77 0.46 0.31 0.83 0.83 0.69

Relative Sensitivity 0.70 0.33 0.19 0.80 0.93 0.55 0.37 1.00 1.00 0.83

Sensitivity is shown in italics. Bold marks top values
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surpassed 70% and in the colon dataset, 3 surpassed 70% (Fig. 3b). In the colon dataset,

two metrics surpassed 80% (M4 and M5).

Comparison of estimations

The results described so far demonstrate that some metrics vary in their detection

performance. These differences should correspond to different values of the metric,

resulting in different prioritization of genes. To revise this, we compared the estimated

values of the metrics between N and T3 in the controlled lung dataset. The results shown

in Fig. 4 suggest that some clusters provide similar estimations. The clusters formed by

metrics M3, M4, and M5 are clearer. M6 seems to be more similar to this cluster than to

M2 and M1. The lack of similitude of M1 and M3 to the other metrics does not depend

on the threshold used, as other thresholds provide similar results (data not shown). These

results suggest that some metrics provide different priorities, thus suggesting that using

metrics of different clusters could be convenient.

Comparison of the running time

We estimated the time needed for each metric using a dataset containing 11,925 genes

with two classes of 24 and 39 samples, respectively. The results shown in Table 4

Fig. 3 Comparison of the performance of metric across datasets. Panel a shows the relative sensitivity of all
metrics in the three datasets. Panel b shows the concentrated global sensitivity per dataset. For M1 and M3,
only the best threshold is shown
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clearly show that M4 = M3 < M1 < M6 < M5 < < M2. The running time of M1, M3,

M4, and M6 is a few minutes, M5 takes more time, and M2 is close to hours. Thus,

none of the metrics seem prohibitively slow, but this highlights differences of as much

as one order of magnitude.

Example of a differential correlation analysis

To show the potential and the implications of differential correlation analysis, we esti-

mated the differential correlations across breast cancer subtypes from TCGA RNA-Seq

data. In TCGA, the breast cancer subtypes are annotated according to molecular signa-

tures of breast cancer [27] into Luminal A, Luminal B, Basal-Like, and Her2-Enrich

(Normal-Like subtypes were removed due to the low number of samples). We made all

pairwise estimations of differential correlations and further described selected compari-

sons. For this, from the 20,531 genes, we used 9981 that were in the top 25% of the

Fig. 4 Comparison of metrics in the controlled dataset from Lung

Table 4 CPU time needed per metric (in seconds)

Metric* In Dataset In 10 Permutations Test Time

M1 (0.1) 16.2 204.5 220.7

M2 302.0 2975.1 3277.1

M3 (0.1) 8.8 158.6 167.4

M4 11.5 153.5 165.0

M5 63.5 679.8 743.3

M6 20.0 243.2 263.2

*The threshold used in shown between parenthesis
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highest mean or 25% of the highest standard deviation. We used metric 4 for these

comparisons and the 484 samples with molecular classifications, distributed in 222,

118, 92, and 52 samples for Luminal A, Luminal B, Basal-Like, and Her2-Enriched sub-

types, respectively.

The differentially correlated but not differentially expressed genes can be

enriched in specific functions. We focused on those genes with exclusively differential

correlation in any comparison but that will not be included in any differential expres-

sion analysis. Thus, we used those genes whose minimum p-value of differential correl-

ation was lower than 10−4 and whose minimum p-value of differential expression was

larger than 10−4. A DAVID analysis [28], which is focused on over-represented biological

terms in a list of genes, revealed that the 694 differentially correlated analyzed genes are

enriched in important biological functions (Table 5, overall). For example, fibronectins are

known to play an important role in the interaction with stromal cells for extracellular matrix

remodeling [29]. Our simple analysis revealed that, specifically, fibronectin type III is highly

differentially correlated among those genes that are not differentially expressed. Overall, this

analysis shows that differentially correlated genes may reveal interesting functions.

The differentially correlated genes can gain or lose correlations with similar sets

of genes. We then made a similar analysis but focused on specific comparisons using

the smallest and largest differences. These corresponded to the Luminal A compared

with Luminal B subtypes and the Basal-Like compared with the Her2-Enriched sub-

types, respectively. We wondered whether the genes that are losing or gaining correl-

ation form tight network modules or broad gene-specific sub-networks. For this, we

obtained the differentially correlated genes that were not differentially expressed

(Fig. 5a-b); then, for each gene, we obtained the top 50 genes with the highest absolute

difference in correlation. The results are presented in Fig. 5c and Fig. 5d, respectively.

The figures show that, in both cases, the differentially correlated genes cluster together

to form two large network modules. These modules are formed by a large fraction of

all genes included in the comparisons, and they share a characteristic opposite trend

where genes “disconnect” (losing correlation) from one module and “connect” (gaining

correlation) in the other. Other network sub-modules can also be distinguished by

specific groups of genes.

Table 5 Enrichment of biological terms in differential correlated genes between breast cancer subtypes

Analysis Cluster Terms Gene Counts
Range

DAVID Enrich
Score

*Benjamini
p-Value

Overall Signal peptide, Glycoprotein, Disulfide bond 155–199 6.18 1.3e-5

Membrane 134–280 3.8 2.5e-3

Fibronectin type III, FN3 17–21 3.41 8.7e-3

Pleckstrin homology domain 22–30 3.41 2.4e-2

Voltage-gated ch, Ion channel & Transport 15–33 2.96 6.3e-3

Immunoglobulin I-set, subtype 2, domains 18–34 2.91 4.0e-3

Innate immunity 20–25 1.96 1.1e-2

LumA-LumB Mitosis, Cell Division, Cell Cycle 8–10 2.87 2.0e-3

Secreted, Glycoprotein, Signal 21–30 2.56 7.4e-3

Basal-Her2 Palmitate, Lipoprotein, Receptor 6–8 1.76 1.1e-1

NAD, Retinol metabolism 3–4 1.56 1.3e-1

*Minimum adjusted p-value reported in DAVID analysis
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Conclusion
The estimation of differentially correlated genes is an important feature for a deeper

understanding of biological differences. Here, we studied several metrics to determine

differential correlation under a highly controlled environment. We showed that there

are differences in detection power and CPU time across diverse datasets. We also

showed that some metrics are not correlated and could detect different sets of genes.

Metrics that do not filter information seem to perform better. We showed a basic example

demonstrating additional uses of differential correlation in a real dataset. Further, we

implemented in R the DifCoNet package, which provides easy-to-use functions for

differential correlation analyses.
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