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Abstract
Background: Feature selection and prediction are the most important tasks for big
data mining. The common strategies for feature selection in big data mining are L1,
SCAD and MC+. However, none of the existing algorithms optimizes L0, which
penalizes the number of nonzero features directly.

Results: In this paper, we develop a novel sparse generalized linear model (GLM) with
L0 approximation for feature selection and prediction with big omics data. The proposed
approach approximate the L0 optimization directly. Even though the original L0 problem
is non-convex, the problem is approximated by sequential convex optimizations with
the proposed algorithm. The proposed method is easy to implement with only several
lines of code. Novel adaptive ridge algorithms (L0ADRIDGE) for L0 penalized GLM with
ultra high dimensional big data are developed. The proposed approach outperforms
the other cutting edge regularization methods including SCAD and MC+ in simulations.
When it is applied to integrated analysis of mRNA, microRNA, and methylation data
from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal
debulking are identified simultaneously. The biological significance and potential clinical
importance of those genes are further explored.

Conclusions: The developed Software L0ADRIDGE in MATLAB is available at https://
github.com/liuzqx/L0adridge.

Keywords: Sparse modeling, L0 penalty, Big data mining, Multi-omics data, GLM,
Classification, Suboptimal debulking

Background
Integrating multilevel molecular and clinical data to design preventive, diagnostic, and
therapeutic solutions that are individually tailored to each patient’s requirements is the
ultimate goal of precision medicine. However, the huge number of features makes it nei-
ther practical nor feasible to predict clinical outcomes with all omics features directly.
Thus, selecting a small subset of informative features (biomarkers) to conduct association
studies and clinical predictions has become an important step toward effective big data
mining. Statistical tests or univariate correlation analysis for feature selection ignore the
interacting relationship among genes. To evaluate the predictive power of the features,
one appealing approach for feature selection is L0 regularized sparse modeling, which
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penalizes the number of nonzero features directly. L0 is known as the most essential spar-
sity measure and has nice theoretical properties. However, it is computational impossible
to perform an exhaustive search when analyzing omics data sets with millions of features.
L0 penalized optimization is known to be NP-hard in general (Lin et al. 2010).
One common strategy for feature selection is to replace the non-convex L0 with the L1

norm. L1 is a convex relaxation and loose approximation of L0. Although L1 penalized
sparse models [1] can be solved efficiently, the estimators with L1 are penalized too much
and asymptotically biased. In addition, L1 inclines to select more spurious features than
necessary, and may not always choose the true model consistently [2]. Theoretically, L1
never outperforms L0 by a constant [3]. Depending on the location of true optimum, L1
may perform much worse than L0 [4, 5]. As a result, the convex relaxation techniques
have been shown to be suboptimal in many cases [6]. More recent approaches aimed to
reduce bias and overcome discontinuity include the non-convex SCAD [7] and MC+ [8].
However, none of the existing algorithms directly approximate the L0 optimization prob-
lem. Either SCAD or MC+ has been rarely used for feature selection in big data analytics
because of their computational intensity with multiple tuning parameters. On the other
hand, recent research works including ours show that sparse regression models with L0
penalty (local solution) outperforms L1 (global solution) by a substantial margin [5, 9–11].
Debulking cytoreductive surgery is a standard treatment for ovarian cancer. The goal

of debulking is to remove as much visible cancer as possible. However, if tumor nodules
have invaded vital organs, surgeons may not be able to remove them without compro-
mising the patient’s life. Leaving tumor nodules larger than 1 cm is defined as suboptimal
debulking (cytoreduction). It has been shown that suboptimal debulking is associated
with reduced chemosensitivity and poor survival in ovarian cancer. Biomarkers derived
frommulti-omics data may help physicians decide which patients should undergo surgery
and which should be treated with chemotherapy first [12–14]. Identifying biomarkers
from multi-omics data has been an exciting but challenging task. Sparse modeling is one
of the important approaches for simultaneous phenotype prediction and biomarker iden-
tification. In this paper, we propose a L0 penalized generalized linear regression (GLM)
for feature selection and prediction. Adaptive ridge algorithm (L0ADRIDGE) is developed
to approximate L0 penalized GLM with sequential convex optimization and is efficient
in handling ultra high-dimensional omics data. The proposed method outperforms other
cutting-edge convex and non-convex penalties including L1, SCAD and MC+ with sim-
ulations. When applied to the important suboptimal debulking prediction problem in
ovarian cancer, the proposed approach identifies multilevel molecular signatures through
mining methylation, microRNA and mRNA expression data jointly from TCGA. The
identified molecular signatures are further evaluated using public databases.

Materials andmethods
Given an input XN×P , where N � P, and output Y, we have a generalized linear model
with canonical link in the following form:

E(Y |X) = μ = G(θ), and θ = Xβ ,

where G is a canonical link function. Different link functions lead to different models.
For instance, a logit link function leads to logistic regression, while an exponential link
function leads to Poisson regression.
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L0 penalized GLM

The distribution of Y in GLM is assumed to be from the exponential families with the
following probability (density) function:

f (Y , θ ,φ) = exp
{
Yθ − B(θ)

A(φ)
+ C(Y ,φ)

}
,

where φ is a dispersion parameter, and different functions A(∗), B(∗) and C(∗) are for
different distributions Y [15]. The corresponding mean and variance are:

E(Y ) = μ = B′(θ), and Var(Y ) = V (μ)A(φ) = B′′(θ)A(φ),

where V (μ) = B′′(θ). Let Y =[Y1, . . . ,YN ]t , X =[ x1, x2, . . . , xN ]t , and μ =[μ1, . . . ,μN ]t ,
so μi = G(θi) = G

(
xtiβ

)
and θi = xtiβ . The log-likelihood of Y is

L(Y ,μ,φ) =
N∑
i=1

log f (Yi, θi,φ)

=
N∑
i=1

{
Yiθi − B(θi)

A(φ)
− C(Yi,φ)

}
.

Dropping the constants A(φ), and C(Yi,φ), we have the simplified log likelihood as
follows:

L(Y ,μ) =
N∑
i=1

{Yiθi − B(θi)}.

Hence, L0 penalized error function to minimize is

argmin
β

E = argmin
β

{
−L(Y ,μ) + λ

2
|β|0

}

= argmin
β

{ N∑
i=1

[B(θi) − Yiθi]+λ

2
|β|0

}
, (1)

where |β|0 = ∑P
j=1 I(βj �= 0) is the number of nonzero elements in β , μi = G(θi) and

θi = xtiβ . If we define
0
0 = 0, then |β|0 = ∑

j I(βj �= 0) = ∑
j

β2
j

β2
j
. Equation (2) is equivalent

to

argmin
β

E = argmin
β

{−L(Y ,μ) + λ|β|0}

= argmin
β

⎧⎨
⎩

N∑
i=1

[B(θi) − Yiθi] + λ

2

P∑
j=1

β2
j

β2
j

⎫⎬
⎭ , (2)

which is equivalent to the following system:

argmin
β

E = argmin
β

{−L(Y ,μ) + λ|β|0}

= argmin
β

⎧⎨
⎩

N∑
i=1

[B(θi) − Yiθi]+λ

2

P∑
j=1

β2
j

η2j

⎫⎬
⎭ ,

η = β . (3)
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Given η and θi = xtiβ , the derivative of E w.r.t. β is

∇E =
N∑
i=1

[
B′(θi) − Yi

] ∂θi
∂β

+ λβ � η2

=
N∑
i=1

[
B′(θi) − Yi

]
xi + λβ � η2,

where � indicates element-wise division. The Hessian matrix is

H(β) =
N∑
i=1

B′′(θi)xtx + λ � η2.

Let

D =

⎡
⎢⎢⎢⎢⎣

η21 0 . . . 0
0 η22 . . . 0
...

...
. . .

...
0 0 . . . η2P

⎤
⎥⎥⎥⎥⎦ , and V =

⎡
⎢⎢⎢⎢⎣

V1 0 . . . 0
0 V2 . . . 0
...

...
. . .

...
0 0 . . . VP

⎤
⎥⎥⎥⎥⎦ ,

where Vi = V (μi) = B′′(θi) = G′(θi), i = 1, . . . ,N , and let Ỹ =[Y1 − B′(θ1), . . . ,
YN − B′(θN )]t =[Y1 − μ1, . . . ,YN − μN ]t , we have

∇E = −D−1(DXtỸ − λβ),

H(β) = D−1(DXtVX + λI). (4)

The Newton-Raphson iteration for β is

βnew = βold −
{
H

(
βold

)}−1 ∇E

= βold + (
DXtVX + λI

)−1
(
DXtỸ − λβold

)

= (
DXtVX + λI

)−1
[
DXtVXβold + DXtỸ

]

= (
DXtVX + λI

)−1 DXt
[
VXβold + Ỹ

]
.

Let Z = VXβold + Ỹ , we have

βnew = (
DXtVX + λI

)−1 DXtZ,

η = βold = βnew. (5)

Different link functions will lead to different regression models as shown as in Table 1.
Other GLMs such as negative binomial, gamma, and inverse Gaussian can be imple-

mented accordingly with a different V (μ). When dealing with big data problems with
N � P,where N is the number of samples and P is the number of parameters, the inverse
of a P × P matrix is time-consuming and computational challenging. We proposed an

Table 1 Link functions for linear, logistic and Poisson regression models in GLM, where different
models have different A(∗), B(∗), and C(∗)

GLMmodels B(θ) μ(θ) = B′(θ) Link θ(μ) V(μ) = B′′(θ)

Linear regression θ2/2 θ Identity 1

Logistic regression log(1 + eθ ) 1
1+e−θ logit μ(1 − μ)

Poisson regression exp(θ) exp(θ) log μ
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efficient algorithm to calculate the inverse of a much smaller N × N matrix as follows
(Liu et al. 2015):

(
DXtVX + λIP×P

)−1 DXt = DXt (VXDXt + λIN×N
)−1 .

So that when N � P, we have a much efficient estimation:

βnew = DXt (VXDXt + λI
)−1 Z,

η = βold = βnew. (6)

The adaptive ridge algorithm (L0ADRIDGEA) is implemented in MATLAB are as
follows:

The L0ADRIDGE Algorithm:
Given a λ > 0, ε = 1e − 6,
and training data {X, y},
Initializing βnew = rand(P, 1)/100,
While 1,

η = βold = βnew, and D = diag
(
η21, . . . , η

2
P
)
.

θ = Xβold, μ(θ) = G(θ) = B′(θ), and Ỹ = Y − μ(θ).
V = diag[ (B′′(θ1), . . . ,B′′(θN )], and Z = VXβold + Ỹ
If N ≥ P, βnew = (

DXtVX + λI
)−1 DXtZ,

Else, βnew = DXt (VXDXt + λI
)−1 Z.

if ||βnew − η|| < ε, Break; End
End

The algorithm is easy to implement and very efficient for either small sample size and
large dimension or large sample size and small dimension big data problem. The regular-
ized parameter λ can be determined either by cross-validation or by AIC and BIC with
λ = 2 and λ = log(N), respectively. We further discuss that the proposed method is a L0
approximation and converges to L0 when the number of iterationsm → ∞.

Algorithm justification: Given a high-dimensional big feature matrix XN×P (N � P)

and a threshold γ for the coefficient estimates, L0 rejects all the coefficient estimates
below γ to 0 and keeps the large coefficients unchanged. This is the same as defining
a binary vector s =[ . . . , 1, 0, . . . , 1]t , with the value of 0 or 1 for each feature, where
sj = 1 if the coefficient estimate for that feature is above the threshold γ , and 0 oth-
erwise. Let S = diag(s) be a matrix with s on its diagonal, we have the selected feature
matrix XS = XS. We can build the standard models with the matrix XS, if we know s in
advance. For instance, we can estimate the coefficients of a GLMwith L2 regulation given
XS and Y with

βnew = (Xt
SVXS + λI)−1Xt

SZ = (Xt
SVX + λI)−1Xt

SZ = (SXtVX + λI)−1SXtZ, (7)

where Z = VXβold + Ỹ , Ỹ =[Y1 − μ1, . . . ,YN − μN ]t , and Xt
SVXS = SXtVXS = SXtVX

because of the special structure of matrix S. It is guaranteed that the estimate is 0 for
feature j with sj = 0. However, in reality we do not know s. Estimating both s and θ

is an NP-hard problem, since we need to solve a mixed-integer optimization problem.
Comparing Eq. (7) with Eq. (5), βnew = (DXtVX+λI)−1DXtZ, it is clear that S is replaced
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byD and a binary sj is approximated by a continuous η2j in proposed algorithm. Therefore,
the proposed method is a L0 approximation.
Recall the iterative system in Eq. (3), note that each feature is penalized by a differ-

ent penalty, which is inversely proportional to the squared magnitude of that parameter
estimator ηj. i.e.,

λj = λ

2η2j
, and ηj = βj.

Smaller βj will lead to larger λj. A tiny βj, will become smaller and λj will be getting
larger in each iteration of L0ADRIDGE algorithm. βj → 0, and λj → ∞. On the other
hand, a larger βj will lead a finite λj, and nonzero βj, when the number of iteration goes
to ∞. The solution of L0ADRIDGE will converge to that of Eq. (7), because the effect of
nonzero ηj will be canceled out in Eq. (5). Note that our proposed methods will find a
sparse solution with a large number of iterations and small ε, even though the solution
of L2 regularized modeling is not sparse. Small parameters (βjs) become smaller at each
iteration and will eventually go to zero (below themachine ε). We can also set a parameter
to 0 if it is below predefined ε = 1e − 6 to speed up the convergence of the algorithm.

Results
Simulations

Poisson Regression: Our first simulation was used to evaluate the performance of our
method for high dimensional Poisson regression. The data was generated from Pois-
son distribution with different sample sizes (N) and dimensions (P). However, only
features 1, 5, 10 and the constant term are used to generate the Poisson counts with
[β0,β1,β5,β10]=[ 1, 0.5, 0.5, 0.4]. The count Y is generated with Y = Poisson(μ), where
mean μ = exp(βX). The proposed method is compared with the glmnet ([16] and
SparseReg package [17, 18]. glmnet and SparseReg implemented the elastic net, SCAD,
and MC+ penalties with an efficient path algorithm. We compare the performance of our
approach with L1 (glmnet), SCAD and MC+ using the popular BIC (λ = log(N)) criteria.
Our L0ADRIDGE is compared to the glmnet for L1 and SparseReg for both SCAD and
MC+. The results of different methods are presented in Table 2.
Table 2 shows that our L0ADRIDGE consistently achieved the best performance with

BIC and different sample sizes and dimensions. With BIC, although MC+ has the lowest
square root of mean squared error (rMSE), and fits the data better, L0ADRIDGE achieves
the least absolute bias |β̂ − β|, highest percentage of identified true model (PTM), and
lowest false discovery rate (FDR) under different simulation settings. The average num-
ber of selected features (ANSF) with L0ADRIDGE is also closest to the true number 4.
Particularly, L0ADRIDGE found 100% true model with the lowest average absolute bias
(0.086) under the dimension of P = 10, 000 and sample size of N = 500, indicating that
the proposed approach is efficient under extra-high dimensional setting. Another inter-
esting finding is that the square root of mean squared errors and absolute biases with
L0ADRIDGE did not vary much across different simulation setting, indicating the robust-
ness of the proposed approach. Moreover, L0ADRIDGE with BIC is slightly faster than
different routines implemented in glmnet and SparseReg in computational time. Finally,
BIC apparently is not a good model selection criteria for L1, SCAD and MC+. More fea-
tures are selected than necessary. A larger λ is needed for selecting the correct model.
We reported the results with a larger λ on Additional file 1: Table S1, and demonstrated
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Table 2 Performance of different GLM methods for Poisson regression over 100 simulations, where
values in the parenthesis are the standard deviations, and ANSF: Average number of selected
features; rMSE: Average square root of mean squared error; |β̂ − β| = ∑

i |β̂i − βi|: average absolute
bias when comparing true and estimated parameters

PMS
glmnet SparseReg

L0ADRIDGE
L1 SCAD MC+

rMSE 1.10(±.091) 1.090(±.092) 1.087(±.091) 1.937(±.222)

N =100 |β̂ − β| 1.755(±.274) 1.754(±.275) 1.737 ± .273) 0.222(±.116)

P =100 ANSF 43.03(±3.52) 43.07(±3.57) 42.06(±3.51) 3.99(±.100)

PTM 0% 0% 0% 99%

FDR 90.6% 90.6% 90.6% 0%

rMSE 0.503(±.017) 0.502(±.017) 0.501(±.018) 2.108(±.359)

N =100 |β̂ − β| 2.671(±.421) 2.673(±.425) 2.821 ± 2.012) 0.424(±.350)

P = 103 ANSF 75.47(±5.61) 75.82(±5.71) 75.14(±8.69) 3.610(±.601)

PTM 0% 0% 0% 64%

FDR 94.7% 94.7% 94.6% 2.4%

rMSE 0.271(±.004) 0.272(±.012) 0.275(±.025) 1.916(±.081)

N =500 |β̂ − β| 5.845(±.280) 6.185(±2.359) 5.807 ± .273) 0.086(±.033)

P = 104 ANSF 465.6(±14.1) 475.1(±15.5) 463.6(±13.9) 4.000(±.000)

PTM 0% 0% 0% 100%

FDR 99.1% 99.2% 99.1% 0%

PMS: Performance Measures. PTM: Percentage of true models. FDR: False discovery rate. The values in boldface indicate the best
performance

that both SCAD and MC+ can achieve a much smaller FDR, but a larger absolute bias
and rMSE.

Logistic regression: The logistic regression data was generated with the coefficients
of [β1,β5,β10]=[ 0.5, 0.5,−0.4], respectively, and the remaining coefficients were set to
zero. The score z = Xβ +ε, where ε is the random noise with the signal to noise ratio of 4.
Then, the probability y is generated from the logistic function y = 1/(1 + e−z). Note
that y is the true probability instead of binary (1/0) in this simulation. Unlike the previous
example, the optimal values of λ in this simulation were selected with the standard 5-fold
cross-validation. We divided the λ from λmin = 1e− 4, to λmax into 100 equal intervals in
log-scale, then chose the optimal λ with the smallest test error. The simulation was also
repeated 100 times. The computational results were reported in Table 3. The values in the
parenthesis are the positive/negative standard deviation.
Table 3 shows that L0ADRIDGE outperforms L1, SCAD and MC+ with a substantial

margin under the 5-fold cross-validation. Cross-validation is a standard tool for param-
eter selection in machine learning. L0ADRIDGE achieved the smallest test square root
of mean squared error, least absolute biases, the lowest FDR, and highest percentages of
identified true models The average number of selected features are 3.33 and 3.41 for the
dimensions of 100 and 1000, respectively, which are the closest to the true number of
features 3. In contrary, L1, SCAD and MC+ selected unnecessary features. L1 on aver-
age identified 17.1 and 50.92 features, and SCAD selected 18.35 and 73.03 features on
average for the dimensions of 100 and 1000, respectively, while MC+ performed slightly
better, choosing 10.41 and 24.8 features for the dimensions of 100 and 1000, respectively.
More impressively, out of 100 simulations, L0ADRIDGE identified the true model 81 and
80 times with different dimensions, while L1 and SCAD could not find the true model
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Table 3 Performance of different GLM methods for logistic regression over 100 simulations, where
ANSF: Average number of selected features; trMSE: Test Average square root of mean squared error;
|β̂ − β| = ∑

i |β̂i − βi|: average absolute bias when comparing true and estimated parameters

PMS L1
SparseReg

L0ADRIDGE
SCAD MC+

trMSE 0.0474(±.0035) 0.0469(±.0039) 0.0456(±.0042) 0.0434(±.0028)

N =100 |β̂ − β| 0.2984(±.1262) 0.3129(±.1249) 0.1625(±.0752) 0.0682(±.0416)

P =100 ANSF 17.10(±9.32) 18.35(±10.185) 10.410(±6.174) 3.330(±.779)

PTM 0% 0% 2% 81%

FDR 77.7% 78.4% 62.4% 6.6%

trMSE 0.0517(±.0045) 0.0496(±.0046) 0.0468(±.0045) 0.0434(±.0030)

N =100 |β̂ − β| 0.5968(±.2599) 0.6465(±.2205) 0.2818(±.1030) 0.0754 ± .0600)

P = 1000 ANSF 50.92(±39.974) 73.030(±40.792) 24.80(±13.314) 3.41(±1.065)

PTM 0% 0% 0% 80%

FDR 90.5% 93% 83.9% 7.3%

PMS: Performance Measures. PTM: Percentage of true models. FDR: False discovery rate. The values in boldface indicate the best
performance

once, and MC+ only identified the true model 2 times for the dimension of 100, indicat-
ing the super performance of L0ADRIDGE under cross-validation. Finally, L0ADRIDGE
is robust. The test square root of mean squared error and other performance measures
did not vary much when the dimension increased from 100 to 1000. It is worth noting
that our proposed method performs well with the popular statistical model selection cri-
teria such as BIC and cross-validation. Other popular methods such as L1, SCAD, and
MC+ select more features than necessary with such criteria. Therefore, many popular
packages including the commercialMATLAB usually choose a larger λ one standard devi-
ation above the minimum test error with cross-validation, which is arbitrary and leads to
larger bias. To overcome such bias in parameter estimation, some packages re-estimate
the parameters with the selected features and standard GLM model. Unlike these meth-
ods, our proposed method performed much better without any postprocessing. Finally,
the algorithm is very robust with different initialization. With N = 100, P = 1000 and
100 times of different randomized initialization, we achieved the trMSE of 0.437(±.003),
average absolute bias of 0.0763(±.07), ANSF of 3.39(±1.154), PTM of 85% and FDR of
6.9%, which is quite similar to the results with a fixed initialization.

TCGA ovarian cancer data

The Cancer Genomic Atlas (TCCA) has generated a large amount of next generation
sequencing and other omics data for ovarian adenocarcinoma (OC). In this study, we
conducted integrated analysis of RNA-seq, miRNA expression, promoter methylation,
and debulking status data from 367 OC patients. There are 342 microRNAs, 13,911
mRNA expression (in FPKM), and 21,985 promoter methylation values available. We
first normalized different omics data and screened the debulking associated microRNA,
mRNAs, and methylation promoters with the P-values of less than 0.01 with the train-
ing data only. Based on the central dogma of biology, suboptimal debulking is associated
with microRNA expression, gene expression, and DNA methylation; gene expression is
a function of microRNA expression and DNA methylation; and microRNA expression is
regulated by DNA methylation. L0 Logistic regression was used for suboptimal debulk-
ing prediction, while L0 penalized Poisson regression was used for gene expression and
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microRNA expression prediction with FPKM. FPKM, representing fragments per kilo-
base of exon per million fragments mapped, measures the normalized read counts for
RNA-seq. Three-fold cross validation was used for gene selection and validation. We
reported the gene signatures with the best predicted area under the ROC curves (AUCs).
Molecular signatures that are directly or indirectly associated with suboptimal debulking
are shown in Fig. 1.
Figure 1 indicates that there are 16 gene signatures including 7 mRNAs and 9 epigenetic

markers directly associated with debulking status. Even though there is no microRNA
directly associated with debulking, eight microRNA signatures are indirectly associated
with debulking through their association with mRNA signatures. Moreover, there are
additional 18 epigenetic markers indirectly associated with debulking. The 7 mRNAs
directly associated with debulking are EIF3D, PPP1R7, ADA, HSD17B1, SRBD1, ZNF621,
and BARX1, where EIF3D, PPP1R7, BARX1 and ZNF621 have positive correlations and
the other 3 genes have negative correlations with suboptimal debulking. Among the 7
mRNAs, ADA (Adenosine Deaminase) is a well-studied gene in ovarian neoplasms. ADA
levels were found to be significantly higher in patients with ovarian cancers as compared
with benign ovarian tumors [19]. ADA has been regarded as a potential biomarker for
diagnosis and an agent for the treatment of ovarian cancer [20]. Other mRNAs such
as BARX1, EIF3D, PPP1R7, and HSD17B1 are also known to be associated with differ-
ent cancers or other diseases. At the microRNA level, there are 8 microRNAs indirectly
associated with debulking including mir-183, let-7b, mir-9-1, mir-377, mir-202, mir-758,

Fig. 1 Gene signatures associated with suboptimal debulking, where nodes in red: mRNA signatures; nodes
in green: microRNA signatures; nodes in pink: methylation signatures, and edges in red: positive partial
correlation; edges in blue: negative partial correlation
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mir-375, and mir-30c-2. While let-7b, mir-30c-2, and mir-377 are positively correlated
with suboptimal debulking through mRNAs ADA and BARX1 indirectly, the other 5
microRNAs have indirectly negative correlations with suboptimal debulking. Seven of
eight microRNAs except for mir-758 are known to be associated with ovarian cancer.
Particularly, let-7b is known to be an unfavorable prognostic biomarker and predict of
molecular and clinical subclasses in high-grade serous ovarian carcinoma, and it may
also be useful for discriminating between controls and patients with serous ovarian can-
cer [21, 22]. Mir-183 is known to be associated with multiple cancers. It regulates target
oncogene (Tiam1), and reduce the migration, invasion and viability of ovarian cancer
cells [23]. Finally, at the DNA level, nine epigenetically modified genes directly associ-
ated with debulking are SSX1, TBR1, ZNF621, ORC3L, COL22A1, SPEF2, SSU72, EEF1D,
and ZNF621, where EEF1D, SSU72, and ORC3L are positively associated with subopti-
mal debulking, while 6 other epigenetic genes are negatively correlated with suboptimal
debulking. In addition, 18 other epigenetic genes indirectly associated with debulking
may also have biological implications. Finally, integration of multi-omic data increases
the prediction power substantially. Besides analyzing three types of omics data together,
we performed the same three-fold cross validation for gene expression, methylation, and
microRNA expression separately. The AUC curves are in Fig. 2.
Figure 2 shows that the best predicted AUC over 100 simulations for integrated data

is 0.88, while the best predictive AUCs for gene expression, methylation, and microRNA
over 100 simulations are 0.81, 0.84, and 0.76, respectively. The AUC with integrated data
achieved the highest AUC, indicating the importance of multi-omics data mining. Genes
selected with mRNA, microRNA, and methylations separately are reported in the sup-
plementary document. In addition, we also compare the selected features and the same
number of top genes identified with statistical test. The results are reported on Additional
file 1: Table S2, and demonstrate that although individual genes are more statistically
significant, combination of a panel of genes with standard logistic regression has less
predictive power and test AUC (0.79).
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Integrated Data            0.88[0.82−0.94]
mRNA only                  0.81[0.73−0.89]
microRNA only             0.77[0.67−0.86]
Methylation only           0.84[0.77−0.91]

Fig. 2 Predictive AUCs for integrated data, mRNA expression only, microRNA expression only, and
methylation only
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Conclusions
Biomarkers from multi-omics data may predict disease status and help physicians to
make clinical decisions. L0 based GLM, which directly penalizes the number of nonzero
parameters, has nice theoretical properties and leads to essential sparsity for biomarker
discovery. Optimizing the L0 regularization is a crucial, but difficult problem. We have
developed an adaptive ridge algorithm (L0ADRIDGE) for approximating L0 penalized
GLM. The algorithm is easy to implement and efficient for problems with either an
ultra-high dimension and small sample size, or a low-dimension and large sample size.
It outperforms the other cutting edge regularization methods including L1, SCAD and
MC+ through simulations. When applied to the integration of multilevel omics data
from TCGA and the prediction of suboptimal debulking from ovarian cancer, it can
identify a panel of gene signatures achieving the best prediction power. We also demon-
strate that prediction power of a model with multi-omics data increases substantially,
when comparing with a model with one omics data, indicating the importance of big
data mining.

Additional file

Additional file 1: Table S1. Performance of different GLM methods for Poisson regression over 100 simulations,
where values in the parenthesis are the standard deviations, and ANSF: Average number of selected features; rMSE:
Average square root of mean squared error; |β̂ − β| = ∑

i |β̂ − βi|: average absolute bias when comparing true and
estimated parameters. PMS: Performance Measures. PTM: Percentage of true models. FDR: False discovery rates. The
L0ADRIDGE is compared to the best performance chosen from λ = 0.9λmax and λ = 0.5λmax with both for SCAD and
MC+. Table S2. The comparison of performance of the our sparse modeling approach and the top genes selected
with Student’s t-test. The results demonstrate that although each gene is more statistically significant with statistical
test, the combination of the panel of genes has less predictive power and test AUC with standard logistic regression
and three-fold cross valida- tion, indicating the collinearity among theses genes. (PDF 86 kb)
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