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Abstract
Background: Machine learning strategies are prominent tools for data analysis.
Especially in life sciences, they have become increasingly important to handle the
growing datasets collected by the scientific community. Meanwhile, algorithms
improve in performance, but also gain complexity, and tend to neglect interpretability
and comprehensiveness of the resulting models.

Results: Generalized Matrix Learning Vector Quantization (GMLVQ) is a supervised,
prototype-based machine learning method and provides comprehensive visualization
capabilities not present in other classifiers which allow for a fine-grained interpretation
of the data. In contrast to commonly used machine learning strategies, GMLVQ is
well-suited for imbalanced classification problems which are frequent in life sciences.
We present a Weka plug-in implementing GMLVQ. The feasibility of GMLVQ is
demonstrated on a dataset of Early Folding Residues (EFR) that have been shown to
initiate and guide the protein folding process. Using 27 features, an area under the
receiver operating characteristic of 76.6% was achieved which is comparable to other
state-of-the-art classifiers. The obtained model is accessible at https://biosciences.hs-
mittweida.de/efpred/.

Conclusions: The application on EFR prediction demonstrates how an easy
interpretation of classification models can promote the comprehension of biological
mechanisms. The results shed light on the special features of EFR which were reported
as most influential for the classification: EFR are embedded in ordered secondary
structure elements and they participate in networks of hydrophobic residues.
Visualization capabilities of GMLVQ are presented as we demonstrate how to interpret
the results.
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Introduction
The analysis of data collected during biological experiments poses a challenge for modern
bioinformatics. Usually this data is feature rich, yet hard to interpret, such as it is the
case for single-cell gene expression data obtained by high-throughput experiments [1].
Despite sophisticated pre-processing and the application of machine learning models,
analysis – and most importantly interpretation – of such data is still hard to accomplish.
Nevertheless, machine learning is the basis for sophisticated predictions and allows new
insights into open questions. In this paper, we examine the problem of protein folding,
by means of Early Folding Residues (EFR). Further, we apply an interpretable classifier
on this problem to deepen the understanding of EFR based on the trained model. We
demonstrate how this sparse classification model can be readily discussed and want to
sensitize users that this degree of interpretability – though valuable to gain biological
insights – is not achievable by most state-of-the-art machine learning techniques.

Grasping the protein folding problem through Early Folding Residues

Proteins are chains of amino acids which are connected by covalent bonds and, for the
most part, autonomously fold into a defined structure (Fig. 1) [2, 3]. This stable, three-
dimensional structure allows proteins to be functional and catalyze particular chemical
reactions, transport molecules, or transduce signals in cells. The fundamentals of the so-
called protein folding process are still unclear.
Folding intermediates are highly unstable and thus protein folding was difficult to inves-

tigate experimentally for a long time [4, 5]. Nowadays, pulse labeling hydrogen-deuterium
exchange is a prominent tool to investigate the folding process with spatial and tempo-
ral resolution [6–13]. EFR were identified as key residues for the folding process as they
participate in the earliest folding events. By forming long-range tertiary contacts, EFR are

Fig. 1 Illustration of the protein folding process. The denatured protein (a) has to pass an energetic barrier
(‡), the so-called transition state, to reach its native three-dimensional structure (b). Usually, the native
structure represents the global energetic optimum of the protein. EFR are residues which initiate and guide
the folding process [13, 19]
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also assumed to guide the assembly of different protein regions which stabilize the native,
folded protein structure [10–13]. EFR were shown to be the initiators of the folding pro-
cess and, thus, may be used to advance the understanding of the protein folding process
[14–17]. The process remains elusive, but understanding the peculiarities of the folding
nucleus [12, 16–19] (as indicated by EFR) may aid unraveling it by providing information
on intermediate states of the process. The currently identified set of EFR is deposited in
the Start2Fold database [13] which provides a robust dataset for the characterization of
EFR and the design of classifiers for their prediction. Raimondi et al. developed the predic-
tor EFoldMine that discriminates EFR from other residues, termed Late Folding Residues
(LFR), using features derived from the protein sequence [16]. The aim of their paper
was to distinguish between these two classes using secondary structure propensities and
backbone rigidity values of surrounding sequence fragments. It is crucial to understand,
which features cause a small number of residues to become EFR while the majority of
them are LFR. Unfortunately, the classifiers applied by Raimondi et al. [16] cannot pro-
vide detailed insights and the published model is not discussed under this focus. This is
mainly the consequence of the chosen features and the employed standard Support Vec-
tor Machine (SVM) with the Radial Basis Function (RBF)-kernel; this results in a model
which is difficult to interpret and does not state the features relevant to distinguish the
classes.
We created a dataset using the same data basis but utilize a more diverse set of

features. This set includes information derived from the protein structure as a corre-
sponding structure is deposited in the Protein Data Bank (PDB) for each protein of the
dataset. This allows for a better interpretability and discussion of the resulting model and,
thus, emphasizes unique aspects of the Generalized Matrix Learning Vector Quantiza-
tion (GMLVQ) classifier. Our study demonstrates how an adaptation of an established
machine learning strategy allows pinpointing the most influential features for classifica-
tion. Therefore, we present a novel implementation of the GMLVQ algorithm [20, 21] as
plug-in for the popularWaikato Environment For Knowledge Analysis (Weka) framework
[22–24]. This plug-in features diverse visualization tools which encourage the user to
interpret the resulting model and render GMLVQ a comprehensible white box classifier.
Furthermore, Weka allows to readily access the trained model by the provided applica-
tion programming interface. Since user-friendly and publicly accessible web applications
represent the future direction of the development of machine learning models [25–28],
we deployed our model as web server accessible at https://biosciences.hs-mittweida.
de/efpred/. The web server displays the predicted positions of EFR in the structure
using NGL [29, 30].

Detailed description of the dataset of Early Folding Residues
The Start2Fold database [13, 19] contains the results of pulse labeling hydrogen-
deuterium exchange experiments for 30 proteins. Due to the nature of the experimental
data, no information can be obtained for the amino acid proline because its amide group
is not susceptible to an exchange of hydrogen to deuterium. We extracted annotations
of EFR from this database as described by [19] to compose our dataset. All 111 proline
instances were dropped from the initial dataset which resulted in 3266 residues of which
482 (14.8%) are EFR. The experimental annotation of a residue to be either EFR or LFR
was assigned as class label.

https://biosciences.hs-mittweida.de/efpred/
https://biosciences.hs-mittweida.de/efpred/
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Feature annotation

Every amino acid in the dataset was represented by a number of features capturing dif-
ferent aspects of their molecular surroundings and physicochemical properties. Amino
acids have sequential and spatial neighbors and both levels of organization are strongly
intertwined by the process of protein folding [31]. All considered features describe a par-
ticularized aspect of this connection and are summarized in Table 1. Features of each
residue were averaged with respect to four adjacent positions at the sequence level in N-
as well as C-terminal region. The dataset is provided in Additional files 1 and 2. Additional
file 3 captures correlations between features.

Energy profiling Energy Profiles [32, 33] transform the three-dimensional arrange-
ment of atoms in a protein into a vector of energy values describing each amino acid.
The computed energy (e) of a residue describes its interactions with its surroundings.
Energy Profiles can also be predicted using only sequence information [32] (ePred) which
represents the sequence composition. Computed as well as predicted energy values have

Table 1 Denomination and short description of the 27 features of the dataset for individual residues
classification

Feature Description

e Computed energy values

ePred Predicted energy values

SecSize Size of the surrounding secondary structure elements

LF Fraction of surrounding unordered secondary structure elements

Rasa Relative accessible surface area

PlipLC Absolute count of local PLIP contacts

PlipHbLC Absolute count of local PLIP hydrogen bonds

PlipHpLC Absolute count of local PLIP hydrophobic interactions

PlipBbLC Absolute count of local PLIP backbone contacts

PlipLR Absolute count of long-range PLIP contacts

PlipHbLR Absolute count of long-range PLIP hydrogen bonds

PlipHpLR Absolute count of long-range PLIP hydrophobic interactions

PlipBbLR Absolute count of long-range PLIP backbone contacts

PlipBN Betweenness using all PLIP contacts

PlipCL Closeness using all PLIP contacts

PlipCC Clustering coefficient using all PLIP contacts

PlipHbBN Betweenness using PLIP hydrogen bonds

PlipHbCL Closeness using PLIP hydrogen bonds

PlipHbCC Clustering coefficient using PLIP hydrogen bonds

PlipHpBN Betweenness using PLIP hydrophobic interactions

PlipHpCL Closeness using PLIP hydrophobic interactions

PlipHpCC Clustering coefficient using PLIP hydrophobic interactions

ConvBN Betweenness using the distance-based contact definition

ConvCL Closeness using the distance-based contact definition

ConvCC Clustering coefficient using the distance-based contact definition

PlipNC Distinct neighborhood count using all PLIP contacts

ConvNC Distinct neighborhood count using the distance-based contact definition

References to these features are given in italic font
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been used before for the description of the folding process [32] as well as protein structure
quality assessment [33].

Secondary structure elements Secondary structure elements were annotated using
DSSP [34] in its BioJava [35, 36] implementation. The secondary structure element size
of a residue (SecSize) refers to the number of sequence neighbors sharing the same sec-
ondary structure (i.e. α-helix, β-strand, and coil). For sequence windows of nine residues
the number of unordered secondary structure elements was counted and normalized by
the window size [37]. This yields a fraction (LF), where high values are tied to regions of
high disorder, whereas amino acids embedded in α-helices or β-sheets result in scores
close to 0.

Relative accessible surface area The Relative Accessible Surface Area (RASA) of a
residue describes how exposed it is towards to solvent. Residues in the hydrophobic
core tend to be buried and exhibit no accessible surface area. RASA values (Rasa) were
computedwith theBioJava [35, 36] implementationof the algorithmbyShrake andRupley [38].

Non-covalent contacts Non-covalent contacts stabilize protein structures and are the
driving force behind protein folding [31]. The Protein-Ligand Interaction Profiler (PLIP)
[39] was used for the annotation of non-covalent contacts between residues in protein
structures. PLIP supports different contact types such as salt bridges, π-stacking interac-
tions, or π-cation interactions. For this study, only hydrogen bonds (Hb) and hydrophobic
interactions (Hp) were considered explicitly. Other contact types were not observed for
most of the rather small proteins in the dataset. Furthermore, local and long-range con-
tacts [40] were distinguished. Local contacts (suffix LC) are defined as contacts between
residues less than six sequence positions apart – their main contribution is stabilizing
secondary structure elements. In contrast, long-range contacts (suffix LR) occur between
residues more than five sequence positions apart and constitute stabilizing contacts
between secondary structure elements which primarily manifest the three-dimensional
arrangement of a protein. Backbone contacts (Bb) occur only between backbone atoms of
the respective residues.

Residue graph representation of proteins Proteins in the dataset were represented as
residue graphs. Amino acids always constituted the nodes and contacts between residues
were represented by edges. Covalently bound residues were considered to be in contact.
All contacts annotated by PLIP were used to create the first graph representation (using
the prefix Plip). Reduced representations were created by only considering hydrogen
bonds (prefix PlipHb) respectively hydrophobic interactions (prefix PlipHp). The contacts
detected by PLIP may ignore spatially close residues when they do not form any con-
tacts according the underlying rule set. Therefore, an additional contact definition was
employed (prefix Conv): two residues were considered to be in contact, if their Cα atoms
were at most 8 Å apart.

Topological descriptors Based on the four graph representations (Plip, PlipHb, PlipHp,
and Conv), topological descriptors of individual residues were computed. This allows to
describe how residues are connected to other residues. Most of these properties are based
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on shortest paths observable in the graph. The betweenness centrality (BN) of a node is
defined as the number of shortest paths passing through that particular node. The term
is normalized by the number of node pairs 0.5 · n · (n − 1) in the residue graph with n
nodes [41, 42]. The closeness centrality (CL) of a node is defined the inverse of the aver-
age path length to any other node. The clustering coefficient describes the surroundings
of individual nodes. All adjacent nodes are collected and the number of edges between
these nk nodes is determined. The clustering coefficient (CC) of a node is defined as num-
ber of edges between its adjacent nodes, divided by the maximum number of edges which
can theoretically connect these nodes which is 0.5 · nk · (nk − 1). The distinct neighbor-
hood count (NC) captures howmany sequentially distant (long-range) protein regions are
connected by a residue [17].

Description of the GeneralizedMatrix Learning Vector Quantization classifier
The Generalized Learning Vector Quantization (GLVQ) is a powerful distance- and
prototype-based classification method [20]. The idea is adapted from the unsupervised
vector quantization methods such as k-Means or the Self-Organizing Map (SOM) and an
extension of the heuristic Learning Vector Quantization (LVQ) [43]. For each class at least
one prototype is initialized and a function, which approximates the classification accuracy
(Fig. 2), is maximized during learning. The optimization is commonly done by Stochastic
Gradient Ascent (SGA) and ends up in an intuitive adaption of the prototypes. Thereby,
in each iteration, for one training data point v two prototypes are taken into account: the
nearest prototype with the same label as the data point and the nearest prototype with a
different label, noted asw+(v) andw−(v). The prototypew+(v) is attracted whilew−(v) is
repulsed. The strength of attraction and repulsion is obtained by the gradients of the cost
function and the according learning rates. The trained model is a nearest neighbor clas-
sifier, i. e. an incoming data point is assigned to the same class as the nearest prototype.
In general, the GLVQ is a sparse model with interpretative prototypes. The complexity of
the model can be chosen by the user by specifying the number of prototypes per class. If
only one prototype per class and the Euclidean distance is applied, GLVQ is a linear classi-
fier. A more detailed description of the algorithm can be found in [44, 45], Fig. 3 provides
a graphical representation.

Fig. 2 Confusion matrix. Exemplified CM with the formulas of precision (PR), recall (RE), accuracy (CA), and
F1-measure
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Fig. 3 Principle of Generalized Matrix Learning Vector Quantization. Graphical depiction of learning with
GMLVQ [63, 64]. One or multiple prototypes represent classes: each data point in the data space of
dimension N belongs to the class of the prototype with the closest distance d. Prototypes are updated during
learning as in LVQ [65]. Additionally, the matrix � maps the data space to an embedded data space of
dimensionM, where mapped distances d′ are optimized. The matrix � = �′� (CCM) represents the impact
of each feature on the classification performance

A prominent extension of the GLVQ is the Matrix GLVQ [21]. Beside the prototypes,
a mapping of the data points is learned for better separation of the classes (Fig. 4). This
linear mapping, denoted by � ∈ R

M×D, is powerful and provides additional information
about the classification problem. Thereby, D is the number of features. The parameterm
can be chosen by the user and indicates the mapping dimension. If the mapping dimen-
sion is equal to D, the matrix is quadratic, butM can also be set to values smaller than D,
e. g. down to M = 2. In the latter case the GMLVQ can be used for visualization of the
dataset bymapping the dataset into the two-dimensional space [46]. Moreover, the matrix
CCM = �′� is termed Classification Correlation Matrix (CCM) [44]. In contrast to the
correlation matrix of the features, the CCM reflects the correlations between them under
the aspect of class discrimination (Fig. 5b), i. e. positive or negative values of high magni-
tude between two features indicate a high positive or negative correlation of the features
beneficial for the discrimination of classes. High values on the main diagonal occur for
features important for the distinction of classes in general (see Fig. 5a).

Classification of Early Folding Residues
In the first step the dataset is standardized by z-score transformation. As mentioned
before, the given dataset has a very unbalanced class distribution, i. e. only 482 data points
of class EFR and 2784 of class LFR. In such cases the classification accuracy is inconclusive
because it only takes correctly classified data points into account. Therefore, we deter-
mine further prominent evaluations measures based on the Confusion Matrix (CM) such
as precision, recall, F1-measure, and Area Under The Receiver Operating Characteristic
(auROC) [47, 48]. The precision considers data points predicted as the positive class (here
EFR) and recall on all data points, which are real positives. In our example, the number
of EFR is drastically smaller than that of LFR, so in general the precision is much worse
than recall. The F1-measure, which is the harmonic mean between precision and recall, is
sensitive if one of these values is getting too small. The Receiver Operating Characteristic
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Fig. 4 The process of learning. The graphical user interface of the GMLVQ Weka implementation. The matrix
panel shows the CCM and displays live updates during the learning process. A color bar represents the scale
of the matrix elements with a coloring scheme similar to a heat map

(ROC) is a graphical plot illustrating the trade-off between true positives and false posi-
tives for a model. According to theWeka documentation, the ROC is obtained by varying
the threshold on the class probability estimates.
We applied 10-fold cross validation on different classifiers to compare the results of

GMLVQ to other state-of-the-art methods (see Table 2). Furthermore, we investigated
different parameter settings of the GMLVQ in detail (to allow for an unbiased com-
parison, parameters for other methods were chosen by grid search to balance between
performance and potential overfitting). On one side, the model size of the GMLVQ is a
parameter chosen by the user. Here, we chose one prototype per class resulting in a linear
classifier and five prototypes per class, which is more complex. Moreover, the GMLVQ
has the feature to optimize other CM-based evaluation measures like the Fβ-measure or a

a b

Fig. 5 The Classification Correlation Matrix for the classification of Early Folding Residues. a The CCM depicts
the positive impact of individual features for the classification performance on its main diagonal. Especially,
PlipHpCL, LF, and PlipBN are features which discriminate EFR and LFR. The influence of ordered secondary
structure elements was shown before [17, 19]. Both betweenness and closeness centrality tend to be
increased for EFR which indicates their importance for the assembly of secondary structure elements by
long-range hydrophobic interactions [17]. Other entries of the matrix describe pairs of features which are
positively (red) or negatively (blue) correlated and increase classification performance further. b The standard
correlation matrix of all features of the whole dataset. Again, positive and negative correlations are depicted
in red and blue respectively. Interestingly, the features pointed out by GMLVQ do not stand out. Vice versa,
strong correlations between features do not imply a favorable influence on the classification performance
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Table 2 CM presents the confusion matrix of a run. The first row captures the number of true
positives and false positives. The second row presents the number of false negatives and true
negatives. The test results in % right of CM and algorithmic parameters used for the classification of
the data determined with Weka

CM CA PR RE F1 auROC

Naive Bayes

187 195 72.8 23.9 38.8 29.6 70.9

195 2190

Random Forest

192 290 82.1 39.6 39.8 39.7 64.7

293 2491

Support Vector Machine

134 348 87.0 63.2 27.8 38.6 62.5

78 2706

GMLVQ with 1 prototype per class

Run 1

320 162 69.6 27.8 66.4 39.2 67.7

830 1954

Run 2

351 162 68.7 28.3 72.8 40.7 73.7

890 1954

Run 3

348 134 68.6 28.1 72.2 40.4 76.6

891 1893

GMLVQ with 5 prototype per class

Run 4

187 295 77.4 29.7 38.8 33.6 69.4

443 2341

Run 5

288 194 69.0 26.0 59.8 36.2 70.5

819 1965

Run 6

274 208 70.3 26.4 56.8 36.1 70.3

763 2021

Additionally, we marked the best values for the single evaluation measured bold. If not stated otherwise, default setup was used.
SVM with RBF-kernel (σ = 5) which results in 1193 number of support vectors. Weights for weighted accuracy: 0.75 and 0.25.
Fβ -measure with β = 1 (F1)

linear combination of precision and recall. These can take the unbalanced class distribu-
tion into account. These aspects are reflected in Table 2. The comparison of the different
classification models is challenging. It is difficult to decide objectively which classifier
performs best. The SVM ends up with the best accuracy, yet the recall is very low. On
the other side, the GMLVQ optimizing the weighted accuracy has the best recall and
F1-value and optimizing the Fβ-measure ends up with the best value in the auROC. Fur-
thermore, we can notice that very complex models do not automatically perform better.
The Naive Bayes (NB), a very simple, fast and linear classifier performs comparable to
the other much more complex models like Random Forest (RF) or SVM, which utilizes
1193 support vectors, i. e. 36% of the data points are necessary to describe the hyper-
plane. The GMLVQ runs with five prototypes per class perform better in training than
GMLVQwith one prototype, yet, in test the sparsemodel is more suitable.We applied dif-
ferent cost functions evaluating approximated values of classification accuracy, weighted
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classification accuracy, F1-measure, or weighted precision-recall. The results with the
according parameter selection (Table 3) are listed in Table 2.
To sum up, GMLVQ provides better results in recall even if the model is chosen to

be very sparse. Distinguishing EFR and LFR is challenging and a clear separation was
not achievable using the described features. GMLVQ was trained on the dataset in order
to retrieve the most discriminative features of EFR and to showcase the capabilities and
handling of the visualization.

Visualization of learning process and interpretation of classification results

The GMLVQ plug-in tracks and summarizes each run by various visualization panels
(Fig. 6): the CCM panel (Fig. 6a), the cost function panel (Fig. 6b), the feature influence
panel (Fig. 6c), the feature analysis panel which depicts the prototype placement (Fig. 6d),
and the run details panel which reports the parameters of the corresponding run (Fig. 6e).
A detailed description on the example for the EFR dataset is given in order to demon-
strate how results of GMLVQ can be interpreted by integrating information of these
visualization panels.
For the presented dataset, the CCM (Fig. 5a) is primarily homogeneous which is indi-

cated by values close to zero. The major contributing features are the LF, PlipBN, and
especially PlipHpCL as these features exhibit the highest scores on the main diagonal
of the CCM. The positive correlation of LF and PlipBN contributes to the classifica-
tion performance as indicated by positive values described by the corresponding element.
Also, the negative correlation of PlipHpCL to both features increases classification per-
formance. The PlipHpCL is negatively correlated to various other features such as SecSize,
PlipLR, PlipHbLR, and PlipHbCL. To a lesser degree, e and PlipNC are associated pos-
itively. It has to be pointed out that the CCM differs substantially from the correlation
matrix (see Fig. 5b). In the correlation matrix, strong positive correlations are present in
the fourth group of features (local contact counts) and negative correlations in the fifth
group (long-range contact counts). Relevant associations between features pointed out
by GMLVQ are not obvious from the correlation matrix. The five most important fea-
tures for discrimination are listed in Table 4 which was derived from the feature influence
panel (Fig. 6c). The prototype placement depicted in the feature analysis panel (Fig. 6d)

Table 3 Parameter selection to obtain the results of Table 2 using the Weka plug-in

Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Cost function to optimize CA WCA F1 CA WCA F1
Number of epochs 150 150 150 250 250 250

Number of prototypes 1 1 1 5 5 5

Data point ratio per round 0.75 0.75 0.75 0.75 0.75 0.75

Sigmoid sigma interval [1.0,5.0] [1.0,15.0] [1.0,50.0] [1.0,5.0] [1.0,15.0] [1.0,50.0]

Prototype learning rate 1.0 1.0 1.0 1.0 1.0 1.0

Matrix learning True True True True True True

Omega learning rate 1.0 1.0 1.0 1.0 1.0 1.0

Omega dimension 27 27 27 27 27 27

Cost function beta - - 1 - - 1

Cost function weights - [0.75,0.25] - - [0.75,0.25] -

Parallel execution True True True True True True

Classification accuracy (CA), weighted classification accuracy (WCA) with weights 0.75 and 0.25 as well as Fβ -measure with β = 1 (F1)
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a b

d e

c

Fig. 6 Screenshots of the Weka plug-in for GMLVQ. a The visualization of the CCM. The color scale indicates
positive or negative correlations. (a1) The visualizations of each separate run will appear in this area. By
clicking on the respective tab, one can easily switch between individual runs, e.g. cross validation runs. (a2)
This button clears all visualizations except the latest. (a3) The tabs allow the user to switch between different
visualizations of the current run. b The chart visualizes the cost functions over the course of learning.
Additional functions can be visualized here, alongside with the cost function which is optimized. c The
feature influence of single features of the current run. The top-ranked features have the highest contribution
for the classification performance. d The feature analysis panel allows the detailed investigation of features
and prototypes. e This panel shows the parameters which were used for the current run

describes which values individual features adapt for optimal classification performance.
This information is not evident from the CCM but necessary for the interpretation
of the learned model. Selecting only these five features and learning a model on this
dimensionality-reduced dataset, shows a performance similar to the full model. GMLVQ
with weighted accuracy and one prototype per class is given in Table 5. Recall and F1
value are even better compared to using all features. Thus, the GMLVQ can also be used
for feature extraction.
The homogeneity observed in the CCM is the result of the similarity of several features.

At a trivial level, topological descriptors computed on differing graph definitions are likely
to result in redundant information. In that case, it is coincidental which feature will be
highlighted even though all other correlated features capture similar information. Even if

Table 4 Summary of the top five features which are most important for the classification of EFR
according to the GMLVQ and RF method

GMLVQ Random Forest

Feature Rank Influence score Rank Influence score

PlipHpCL 1 0.159 3 1.370

LF 2 0.127 2 1.403

PlipBN 3 0.063 15 0.900

SecSize 4 0.059 19 0.854

e 5 0.042 4 1.332

PlipCL 7 0.012 1 1.700

ConvCC 23 0.009 5 1.223

Importance scores for the RF were computed by the MATLAB implementation. Influence scores are in arbitrary units, higher
values occur for features important for class discrimination. The values of GMLVQ and the predictor importance values are
method-specific and not directly comparable; therefore, the ranks of the top five features are given
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Table 5 CM presents the confusion matrix of a run. The first row captures the number of true
positives and false positives. The second row presents the number of false negatives and true
negatives. Performance of GMLVQ using only the five most important features

CM CA PR RE F1 auROC

376 106 67.7 28.4 78.0 41.6 69.0

950 1834

such features are strongly correlated, the CCM will only capture these characteristics if
the correlation also contributes to the classification performance.
The PlipBN feature is the betweenness centrality [41, 42] derived from all contacts such

as hydrogen bonds or hydrophobic interactions [39] in a protein structure. For this graph,
residues with many of the shortest paths passing through them exhibit high betweenness
centrality scores. This feature is highly discriminative for EFR and LFR as captured in the
CCM. The prototypes which represent the EFR class display above average PlipBN values,
indicating that EFR are better connected in the residue graph than their LFR counterparts.
In fact, EFR exhibit a higher degree and are crucial connectors, so-called hubs. Residues
with high betweenness centrality values have been shown to be crucial for the formation
of stable, local structure and often constitute the folding nucleus of proteins [4, 42, 49].
The LF is relatively low for EFR which implies that EFR tend to be surrounded by

ordered secondary structure elements. Analogously, this is negatively correlated to the
size of the surrounding secondary structure elements and positively correlated to the
Rasa values as it has been shown in previous studies [11, 12, 19, 42]. The LF feature is
furthermore negatively correlated to e which indicates that ordered secondary structure
elements result in favorable, low energy local conformations. These local structures are
assumed to form autonomously and guide the folding process [12, 18].
The importance of the PlipHpCL represents the relevance of hydrophobic interactions

in the core of protein structures (Fig. 7). EFR have an increased propensity to occur in
the core of protein structures which is isolated from the polar solvent [8, 19]. However,
a buried or exposed state [50] derived from the Rasa feature cannot explain the origin
and characteristics of EFR [17]. The closeness centrality [51] is defined as the inverse
of the average path length of a residue to all other residues in the graph. It describes
how well connected individual residues are which is a similar characteristic as covered
by the betweenness centrality [41, 42]. The fact that both PlipBN and PlipHpCL are the
most influential features for the classification demonstrates that they still capture slightly
different aspects. The classification performance benefits from a negative correlation of
both features. EFR occur primarily in the hydrophobic core of a structure where they par-
ticipate in an increased number of hydrophobic interactions with surrounding residues.
Previously, hydrophobic interactions have been shown to be relevant for the initiation
and guidance of the protein folding process itself as well as its in silico modeling [2, 52–54].
They can be realized by a subset of amino acids and have an increased propensity to form
ordered regions [11, 32]. The importance of the PlipHpCL feature and the placement of
the prototypes implies that EFR are primarily embedded in the hydrophobic network of
protein structures. EFR have been previously described to form more hydrophobic inter-
actions which are important for the correct assembly of protein regions separated at
sequence level [17].
In summary, the visualized classification of the GMLVQ run pointed out that many fea-

tures capture redundant information. A subset of the features (PlipHpCL, LF, and PlipBN)
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Fig. 7 Rendering of the network of hydrophobic interactions. Structure of horse heart myoglobin
(PDB:1ymb). In this structure, 58 hydrophobic interactions were detected by PLIP [39]. The centroids between
interacting residues are depicted as red spheres. This highlights the strong contribution of hydrophobic
interactions in the protein core

is discriminative for both classes. Their importance and their respective correlations are
in agreement with previous studies on EFR [16, 19] and, more general, folding nuclei
[8, 12, 18, 42, 55].
Other methods such as RF are also capable of reporting the most influential features

for a classification problem. The reported scores of GMLVQ and RF were ranked to make
them comparable (Table 4). Some features such as LF or e are identified as high influence
features independently of classification method. These features capture unique proper-
ties, which are not described by other features. In contrast the topological properties
(PlipHpCL, PlipBN, PlipCL, and ConvCC) tend to describe similar properties and consti-
tute redundant features. Their reported influence deviates heavily between GMLVQ and
RF. It is remarkable that the most influential feature in either case is the closeness cen-
trality. According to GMLVQ it is the value computed using the network of hydrophobic
interactions (PlipHpCL) whereas RF identifies the closeness centrality computed using all
non-covalent interactions (PlipCL) as most influential. RF ranks PlipHpCL as the third
most influential feature which substantiates the importance of the previously discussed
network of hydrophobic interactions (Fig. 7).

Conclusion
Machine as well as deep learning are trending in (life) sciences. Yet, a lot of classifica-
tion problems are difficult to solve. Especially for problems with highly unbalanced class
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distributions the choice of the best model is crucial. Beside evaluation measures, other
properties might be essential to select a suitable classifier. One key aspect is the inter-
pretability of the learning process and the resulting model. GMLVQ is a prototype-based
classifier. GMLVQ provides an interpretable classification model and was integrated into
the Weka framework to make this classifier and its visualization capabilities accessible to
a wide range of scientists.
A dataset of key residues of the protein folding process was investigated. GMLVQ per-

forms comparable to other state-of-the-art methods such as SVM or RF but provides a
readily interpretable classification model. From a set of 27 features, GMLVQ identified
the fraction of ordered secondary structure elements, the betweenness centrality based
on non-covalent contacts, and the closeness centrality using only hydrophobic interac-
tions as the most relevant features for the distinction between Early and Late Folding
Residues. Despite the specific use case on protein folding, the GMLVQ classifier is gener-
ally applicable for classification problems and constitutes a valuable addition to toolkit of
bioinformatics [56–61].
The classification performance may be improved by using additional features; how-

ever, for sake of simplicity such features were omitted because their computation would
require additional algorithms or models. Promising candidates are backbone rigidity
values [11], sequence-based predictions of Early Folding Residues [16], or evolution-
ary coupling scores [62]. All of them have been previously shown to be discriminative
for Early Folding Residues [16, 19] and may increase the classification performance of
this exemplary application of the Weka plug-in. Established sequence-based features
employed in other classification models [27, 28] may further enhance the prediction of
Early Folding Residues.
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