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Abstract

Background: Identification of non-trivial and meaningful patterns in omics data is one
of the most important biological tasks. The patterns help to better understand
biological systems and interpret experimental outcomes. A well-established method
serving to explain such biological data is Gene Set Enrichment Analysis. However, this
type of analysis is restricted to a specific type of evaluation. Abstracting from details,
the analyst provides a sorted list of genes and ontological annotations of the individual
genes; the method outputs a subset of ontological terms enriched in the gene list.
Here, in contrary to enrichment analysis, we introduce a new tool/framework that
allows for the induction of more complex patterns of 2-dimensional binary omics data.
This extension allows to discover and describe semantically coherent biclusters.

Results: We present a new rapid method called sem1R that reveals interpretable
hidden rules in omics data. These rules capture semantic differences between two
classes: a target class as a collection of positive examples and a non-target class
containing negative examples. The method is inspired by the CN2 rule learner and
introduces a new refinement operator that exploits prior knowledge in the form of
ontologies. In our work this knowledge serves to create accurate and interpretable
rules. The novel refinement operator uses two reduction procedures: Redundant
Generalization and Redundant Non-potential, both of which help to dramatically prune
the rule space and consequently, speed-up the entire process of rule induction in
comparison with the traditional refinement operator as is presented in CN2.

Conclusions: Efficiency and effectivity of the novel refinement operator were tested
on three real different gene expression datasets. Concretely, the Dresden Ovary
Dataset, DISC, and m2816 were employed. The experiments show that the
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ontology-based refinement operator speeds-up the pattern induction drastically. The
algorithm is written in C++ and is published as an R package available at http://github.
com/fmalinka/sem1r.

Keywords: Symbolic machine learning, Enrichment analysis, Ontology, Taxonomy,
Gene expression, Biclustering

Background
Nowadays, omics data analysis that integrates semantics in the form of external prior
knowledge with rawmeasurements is becomingmore andmore popular in computational
biology [1–3]. A typical example of integrative gene expression data analysis may deliver
a direct link between a phenotype and existing annotation terms at different levels of gen-
erality. The integration helps scientists to interpret gene expression data easier because it
can reveal gene sets that share common biological properties. Semantic data are stored in
databases, oftentimes in an ontology format. In this area, an important role is played by
The Open Biological and Biomedical Ontology (OBO) Foundry [4], which provides vali-
dation and assessment of ontologies to ensure their interoperability. Dozens of ontologies
from various biological domains can be downloaded from http://www.obofoundry.org/ .

Gene set enrichment analysis

One of the most popular methods that uses this type of semantics utilizing a connec-
tion between ontologies or gene set databases and genes is enrichment analysis, Gene Set
Enrichment Analysis (GSEA) [5] represents one of its most frequently used implementa-
tions. The enrichment analysis identifies a list of significantly enriched ontological terms
from a provided list of differentially expressed genes that is sorted according by some
ranking metric (p-value, log fold change, etc.). To discover a certain molecular function
or biological process that is shared over the set of differentially expressed genes, Gene
Ontology [6, 7] is an appropriate and often used annotation database. GSEA overcomes
certain limitations of the statistical enrichment assessment based on hypergeometric, χ2,
or Fisher exact test, namely the information loss caused by selection of significant genes
before the enrichment analysis. An example of GSEA outcome that is induced from data
over the KEGG database can be the following:

H = {KEGG_WNT_SIGNALING_PATHWAY,

KEGG_VEGF_SIGNALING_PATHWAY,

KEGG_CELL_CYCLE}.
In our view, this GSEA outcome corresponds to a hypothesis that can be seen

as a collection of three simple rules where each rule has length one and says,
independent of the other rules, that the corresponding term in the rule is signifi-
cantly enriched in the reported set of genes against a background/control gene set.
Unfortunately, GSEA in particular, and enrichment analysis in general, cannot pro-
duce more complex hypotheses. For example, the hypothesis above does not say that
KEGG_WNT_SIGNALING_PATHWAY and KEGG_CELL_CYCLE are enriched simulta-
neously, in conjunction. The form of hypothesis only says that these terms are enriched
individually. On the other hand, let R be the following rule:

http://github.com/fmalinka/sem1r
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KEGG_WNT_SIGNALING_PATHWAY ∧ KEGG_CELL_CYCLE.

R says that simultaneous occurrence of the terms KEGG_WNT_SIGNALING_
PATHWAY and KEGG_CELL_CYCLE in the annotation of a gene (frequently) leads to its
upregulation. The upregulation score for the rule R is computed from a gene set where
each gene has to be associated with both terms simultaneously. In our framework, and
unlike the traditional enrichment analysis, we will be able to cope with these conjunctive
rules.
Moreover, the dimension of biological samples/conditions is disregarded in the enrich-

ment analysis, only the dimension of genes is taken into consideration when constructing
annotations. The enrichment analysis supposes a gene set of interest (e.g. genes that are
differentially expressed) to be a part of the input. Consequently, these methods can only
be applied in such biological experiments, where samples are split into two groups, treat-
ments and controls. However, the treatment and control labels are often not available. In
most cases, the split into groups is unclear, the sample groups may overlap or form com-
plex taxonomies. Under these conditions, any set of differentially expressed genes cannot
easily be determined. For this reason, we suppose that samples are described with a rich
ontology of annotation terms (locations, conditions, complex treatments, etc.) and bring
an opportunity to further generalize the rules with extra terms from this ontology that
can be added into the rules. This allows for inducing a rule that self-defines the semanti-
cally coherent joint groups of genes and samples; the genes tend to be upregulated in the
sample group. The induction is fully automated and driven by the context provided in the
measurements and annotation ontologies. In other words, GSEA uses a 1-dimensional
space of genes to induce a list of significantly enriched annotation terms. In this work,
we expand onto 2-dimensional expression space and consequently allow for generation of
hypotheses that represent a set of genes upregulated in a specific set of samples/biological
conditions. An example of the hypothesis could be the following rule:

H = {KEGG_WNT_SIGNALING_PATHWAY ∧ KEGG_CELL_CYCLE ∧
WING_VEIN_SEGMENT}.

This hypothetical example shows the case where genes belonging to
KEGG_WNT_SIGNALING and KEGG_CELL_CYCLE pathways are frequently upreg-
ulated in samples from WING_VEIN_SEGMENT, which makes a specific body part of
Drosophila melanogaster.

Rule learning with ontological background knowledge

We use rule learning [8, 9] to construct the above-outlined hypotheses. Rule learning
refers to a class of supervised machine learning methods that induce a set of classifica-
tion rules from a given set of training examples. For a binary task, training examples are
assigned to two disjoint sets of positive and negative examples. The rule is an if-then state-
ment where the antecedent is in the form of a conjunction of positive or negative logical
terms, and the consequent is a class label. The final decision regarding an unseen exam-
ple is provided by a set of rules or their ordered list. The rules are widely used in the fields
of medicine and biology for their easy and clear interpretation [10–12] contrary to neural
networks, for instance.
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As previouslymentioned, one of the things that can help scientists interpret their data in
a more natural way is background knowledge. Bioinformatics frequently deals with Gene
Ontology [6, 7] and there are other types of structured databases, such as KEGG [13–15],
which can also be interpreted as an ontology or a taxonomy. Medicine employs Disease
Ontology [16, 17] or SNOMED-CT, natural language processing makes use of WordNet
[18] or YAGO [19], dedicated ontologies are often encountered in industry too.
In our work, these two concepts, rule learning and ontologies or taxonomies, are com-

bined. We observed that the ontologies reasonably increase accuracy and robustness of
induced rules. However, they also reasonably raise the number of logical terms available
for rule construction, which consequently leads to prohibitive growth of hypothesis space
and inefficiency of rule learning. This inefficiency can reasonably be reduced with con-
sistent utilization of the known hierarchical relationships between the ontology terms
that cannot be handled with the traditional rule learning methods [20, 21]. In this paper,
we will focus on the binary task (positive and negative examples, two classes only) and
multiple rule models (the output of the learning algorithm is multiple rules).
The main motivation for this paper was our work published in [22], in which we

introduced a technique called semantic biclustering. This type of biclustering infers a
human easily readable form of hypothesis describing only a single target class (also
known as the target concept). This technique is applied to a gene expression data where
highly expressed genes in corresponding samples are considered as the target class. One
of the proposed methods solves the problem of semantic biclustering by linearizing a
two-dimensional binary datamatrix and a set of ontologies to an attribute-value represen-
tation that can be figured out using one of the well-known rule learning algorithms such
as CN2 [20, 23], RIPPER [21], or PRIM [24]. However, current ontologies, such as Gene
Ontology, contain tens of thousands of hierarchically ordered terms. As a result, building
a classification model without a preprocessing step is time and memory consuming. For
this reason, we introduce a new refinement operator for a rule learning algorithm that
examines properties between given data, ontologies, and its mutual relations to speed-up
and improve the process of learning.
One of the related subfields of machine learning that can exploit formalized prior

knowledge such as ontologies or taxonomies is Inductive Logic Programming (ILP) [25]
where a key challenge is to prune the search space of (first-order logic) rules. For its abil-
ity to work with this form of prior knowledge, we were inspired by this subfield. In [26],
the authors proposed a refinement operator to construct conjunctive relational features.
This algorithm uses taxonomies to exclude conjunction from the exploration process if
the conjunction contains a feature together with any of its subsumees. In [27], the authors
find and prune such hypotheses that are equivalent to a previously considered hypothe-
sis. To test such equivalency in given domain theory, they proposed a saturation method
for a first-order logic clause with the property that two clauses are equivalent whenever
their saturations are isomorphic.
However, the highly expressive first-order logic setting of ILP is traded off by high

computational demands and high complexity of resulting patterns. The latter presents a
challenge when interpreting and validating the outputs. For the analysis task addressed
here, the expressiveness and complexity of ILP is unnecessary. We thus seek to design an
efficient rule-refinement operator in the simpler setting of IF-THEN rules corresponding
to propositional-logic formulas.
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Propositional rule learning

We base our approach on the classical rule learning algorithm CN2 [20]. The input to
CN2 is an attribute-value description of a set of examples along with the class labels of
the examples, i.e. the training set. The output is a set of rules predicting class labels from
the attribute values. Each rule has the form

a1 = v1 ∧ a2 = v2 ∧ . . . → class (1)

where ai denote attributes as defined in the example set, vi are values assumed for the
prediciton, and class is the predicted class. For each class, the algorithm first considers
an empty set of conditions on the left-hand side. Such a rule will trivially predict class
for all examples, which will typically be incorrect. The set of conditions thus needs to be
iteratively extended until the rule has sufficient quality, i.e., it avoids enough out-of-class
examples while retaining the class prediction for sufficiently many in-class examples. The
addition of a condition into a rule is called rule refinement. An applied refinement may
turn out unsuitable even with additional refinements, a high-quality rule is not found.
Thus the algorithm can backtrack and search an alternative refinement. The exact succes-
sion of these operations is prescribed by the Beam search heuristic [28]. When a rule is
accepted and the training set still contains class examples not predicted by it, a new rule
is searched. The loop terminates when each positive example is predicted positive by at
least one of the accepted rules.

Methods
We aim to learn rules similar in form to (1), except each condition on the left-hand side
will correspond to an assumed ontological term. Thus the logical conjunction will simply
correspond to a set of terms. Rules will be searched only for the positive class, as any
example not classified as positive is deemed negative by default (we work in the binary
classification setting). Thus the class symbol in all rules will indicate the positive class,
and we can drop the right-hand side of rules. Therefore, a rule in our context is simply a
set of terms.
Our goal is to find a set of rules which fit well a supplied training set as described above

in the context of the CN2 algorithm. To this end, we introduce a special refinement oper-
ator that, due to the taxonomic nature of the assumed conditions, significantly reduces
the search space of rules and consequently reduces run times of the rule learner in com-
parison to the traditional refinement operator without a loss of accuracy. For example,
if term t1 is in the rule and the ontology prescribes that t2 is more general than t1 then
adding t2 to the rule is obviously useless. We can thus safely prune from the search space
all rules combining t1 and t2.
Technically, the proposed ontology-based refinement operator uses two reduction pro-

cedures: a Redundant Generalization that omits candidate rules based on a relation
generalization-specialization and a Redundant Non-potential that omits the candidate
rules which cannot improve classification accuracy.

Problem formalization

To describe our rule-learning algorithm in detail, we first define a few formal concepts.
We are given



Malinka et al. BioDataMining           (2020) 13:13 Page 6 of 22

• Two sets E+,E− of positive and negative (respectively) examples.
• A set T of ontological terms with a partial order � which encodes the “more general

than" relation. For example, with t1 = biological process and
t2 = developmental process, we have t1 � t2.

• An annotation function M which maps each example to a subset of T, i.e.
M : E+ ∪ E− → 2T .

From M, we can derive a reverse mapping M′ : T → 2E producing the set of examples
annotated with a given term, i.e.M′(t) = {e ∈ E : t ⊆ M(e)}. It is also useful to define the
transitive closure S(t) of M′(t) as the set of all examples annotated by t or any term less
general than t, i.e.

S(t) =
⋃

t′∈T ,t�t′
M(t′) (2)

If t is the only term in a rule, then S(t) is the set of all examples for which the rule
predicts the positive class. S(t) is also called the cover of the rule. More generally, for a
rule conjoining an arbitrary set R ⊆ T of terms, we define the cover function as

�(R) =
⋂

t∈R
S(t) (3)

Finally, we define a generality relation �r on rules. Let R1,R2 ⊆ T , then R1 �r R2 if and
only if �(R1) ⊇ �(R2).

Example 1 Consider 3 hypothetical examples and 7 actual ontology terms as shown in
Fig. 1. The term generality relation� corresponds to the direction of edges frommore to less
general. Here we have M(e1) = {t4},M(e2) = {t5, t6},M(e3) = {t2}. M′(t) is shown above
each t box. Finally, S(t) = M′(t) for t ∈ {t4, t5, t6} but e.g. S(t1) = M′(t1)∪M′(t4) = {e1}.

Proposed algorithm

The algorithm proposed in this work induces a hypothesis from data in the form of a set
of rules. To induce a hypothesis consisting of more rules we apply a covering algorithm

Fig. 1 An example of partial-order binary relation � over a set of terms T. The partial-ordered set is depicted
in the form of a Hasse diagram. The terms and relations come from Gene Ontology. Elements in curly
brackets represent examples that are associated with the individual terms according to the mapping S. In
other words, the information about associations between examples and terms captured in the mapping
M′(t) has already been hierarchically spread over the whole ontology
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that has its origin in the AQ family of algorithms [29] and it is also used in CN2. The
covering algorithm consists of two steps: (1) induce a single rule from the current set of
examples, (2) exclude the examples that are covered by this single rule from the current
set of examples; these two steps are iteratively applied starting with the set of all examples
until all positive examples are covered or a certain number of induced rules is reached.
This process is described in Algorithm 1 and that algorithm we refer to as sem1R. As an
input, the following data are required: a set of positive E+ and negative E− examples, a
set of ontologiesO, and a maximal size of the set of induced rules k. An output is a set of
induced rules. An induceSingleRule function returns the best rule based on selected eval-
uation function. The function induceSingleRule is described in Algorithm 2 , all evaluation
functions can be found in the “Evaluation criteria” section.
Contrary to CN2, the sem1R algorithm has the relations over terms that are explicitly

specified in provided ontologies. Intuitively, if this kind of knowledge were exploited then
we would expect some benefits during the process of inducing rules because the structure
of terms is known. In this case, the main benefit is speeding up the process of inducing
rules and removing obvious redundancy between the terms in rules. This was the main
motivation for the following reduction procedures.

Reduction procedures

In this section, we formulate two procedures that significantly reduce a rule space in
comparison with the traditional rule learning methods such as CN2.

Redundant generalization

This reduction method eliminates such terms occurring in a rule which are more general
than any other term of the rule. Such terms in the rule do not affect a set of examples cov-
ered by the rule and consequently do not change its impact. Evidently, the set of covered
examples is only affected by themost stringent sets of examples according to themapping S.

Theorem 1 Let R1 be a rule and suppose that term t1 ∈ R1 and a term t2 ∈ R1 where
t1 is more general than t2. Then, the rule R1 covers an equal set of examples as a rule
R1 = R1\{t1} that does not contain t1:

�(R1) = �(R1)

and the rule R1 is called a redundant generalization of R1.

Algorithm 1: sem1R
input : E+, E−,O, k
output:H // hypothesis

1 H ← ∅
2 foreach i ∈ {1, 2, · · · , k} do
3 newRule ← induceSingleRule(E+, E−,O, k)
4 E+, E− ← removeCoveredExamples(newRule, E+, E−)
5 H ← H ∪ newRule
6 end
7 returnH
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Proof For simplicity, we take into consideration only rules with cardinality 1. Given this,
mapping S can be seen as a cover operator � because it only makes an intersection over
all sets of examples according to S. Also, a rule of cardinality 1 will be denoted as a term
because we do not want to distinguish the relations over the set of terms and the set of
rules. In this case, the � relation over terms is equivalent to �r relation over rules. This
simplification does not lose generality.
A term cannot be associated with a higher number of examples than its more general

counterpart. Concurrently, examples associated with a more specific term make a subset
of examples associated with a more general term, written as t1 � t2 ⇒ S(t2) ⊆ S(t1)
where t1, t2 ∈ T . Now, let rule R1 = {t1, t2} consist of two terms such that t1 � t2 and
rule R1 = {t2} consists of only term t2. Then R1 covers an equal set of examples as R1.
This equality is proven below.

�(R1) = �(R1)

S(t1) ∩ S(t2) = S(t2)
{e ∈ E : S(t2) ⊆ S(t1)} = S(t2)
S(t2) = S(t2).

Example 2 Consider the ontology O and mappings M,M′, S from Example 1. Let rule
R1 = {t0, t2}, term t0 is more general than t2 (t0 � t2) and this rule covers examples
e1, e2, e3 because �(R1) = �({t0, t2}) = S(t0) ∩ S(t2) = {e1, e2, e3}. Now, consider a rule
R1 = {t2} that also covers examples e1, e2, e3 since �(R1) = S(t2) = {e1, e2, e3} and as
we can see, term t0 occurring in the rule R1 does not influence a set of covered examples.
Given this, rule R1 covers the same set of examples as rule R1. For this reason, rule R1 is
Redundant Generalization and rule R1 is not Redundant Generalization.
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To achieve a non-Redundant Generalization rule, i.e. the rule where the relation � does
not exist between any terms in the rule, we have to apply Redundant Generalization pro-
cedure until the relation � between terms in the rule has not been found. As we can see
in Example 2, this reduction procedure decreases the cardinality (length) of the rules.

Redundant non-potential

In the previous case, the Redundant Generalization method reduces a rule space as
a result of its ability to decrease the cardinality of rules. Specifically, this reduction
capability is applied to the refinement operator that gradually extends rules by adding
new terms into them. Redundant Generalization method can generate fewer candidate
rules because terms that are in a relation with another term are not appended to the
refined rule.
Contrary to the previous method, the Redundant Non-potential method does not uti-

lize relations among terms to reduce a rule space but compares rules with each other
and removes such rules that cannot reach a higher quality value than the current best
rule has. The ability to recognize non-potential rules can be used for a direct reduction
of rules in a rule space and also for eliminating a number of candidate rules in a process
of rules refining. Firstly, we define two types of evaluation function: Q evaluating a qual-
ity of rule based on the number of covered/uncovered examples, and Qp that evaluates a
potentially maximum quality of rule that could possibly be achieved over its future refine-
ments. Examples of Q functions are depicted in Eqs. 11, 13, and 15. Corresponding Qp
functions are depicted in Eqs. 12, 14, and 17. For the moment, we can say thatQp function
expresses an upper boundary of a rule quality. This upper bound can be reached when
we know that rule refinements can only reduce the set of examples the rule covers. Then,
the best potential refinement does not lose any positive examples from the current cover
while ceasing to cover all the current negative examples. A Redundant Non-potential rule
and all its more specific rules can be safely disregarded in the single rule induction pro-
cess because there is a guarantee that these rules cannot exceed an upper boundary of the
rule quality represented by Qp.
To illustrate, consider an arbitrary rule R1 and its more specific rule R2 (R1 �r R2)

which was created by refinement operator application. R2 covers a subset of examples
covered by R1 (�(R2) ⊆ �(R1)). Unfortunately, ACC or F1-score are not monotone
functions, meaning that it is not guaranteed that R2must always have a higher ACC or F1-
score than R1. For this reason, R2 cannot be safely pruned from a rule space because it is
not obvious whether other refinements of R2, which are more specific than R2, can poten-
tially achieve a higher score than R1 even though R2 could have a worse score than R1. To
prune the rule space safely, we maintain the upper bound of rule quality Qp. Given this, if
rule R2 (refinement of R1) has a lower Qp value than R1’s value of Q then R2 is a Redun-
dant Non-potential and this rule, along with all its more specific extensions/refinements,
can be safely pruned from a rule space.

Theorem 2 Let R =< R,�r> be a quasi-ordered set representing a rule space, where
R = {R1,R2,Rbest}. Binary relation �r is defined on R1 and R2 as �r= {(R1,R2)} meaning
that R2 is more specific than R1; relation of Rbest is disregarded - may be arbitrary. If
potential quality (Qp) of the rule R1 is smaller than the quality Q of rule Rbest then the rule
R1 and all its potential more specific rules, i.e. R2, can be pruned from the set of rules R thus
from the rule spaceR. Then the rules R1 and R2 are called Redundant Non-potentials.
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Proof First of all, suppose that a target class is represented by positive examples. Sec-
ondly, suppose an evaluation function whose highest value is returned when all positive
examples and none of the negative examples are covered. An example of this function can
be ACC or F1-score. Note, that ACC is given by equation TP+TN/(TP+TN+FP+FN)

(see the “Evaluation criteria” section) and the reason, why we affect only TP and not TN,
is simple. An example that is classified as TP has to be covered by a rule. On the other
hand, an example classified as TN does not have to be covered by a rule. Since we focus
on the target class, an arbitrary rule reaches a higher score if a new rule covers the same
set of positive examples as a rule and does not cover any other negative example.

Example 3 Consider the ontology O and mappings M,M′, S from Example 1, and two
rules R1 = {t2} and R2 = {t3}. Further, we define a set of positive examples E+ = {e1, e3}
and a set of negative examples E− = {e2}. Firstly, we evaluate the quality of the rules
according to ACC measure (see Eq. 11)

QACC(R1) = TP + TN
TP + TN + FP + FN

= 2 + 0
2 + 0 + 1 + 0

= 2
3

(4)

QACC(R2) = TP + TN
TP + TN + FP + FN

= 0 + 0
0 + 0 + 1 + 2

= 0 (5)

Now, we compute a potential quality score of R2 (see Eq. 12):

Qp_ACC(R2) = TP + TN + FP
TP + TN + FP + FN

= 0 + 0 + 1
0 + 0 + 1 + 2

= 1
3

(6)

Evidently, the potential quality of R2 is smaller than the quality of R1 so we can exclude
the rule R2 and all its more specific rules (e.g. {t5, t6}) from the rule space. Note that an
example of how to compute evaluation measures can be found in the next section.

To achieve the most effective pruning of rule space, we store a value of the highest
quality rule that has been discovered during the learning process inRBEST_SCORE variable,
see Algorithm 2. If the potential quality (Qp(R)) of currently examined rule R is less than
the RBEST_SCORE , then the rule R and all its more specifics rules are Redundant Non-
potential and can be excluded from a rule space.

Evaluation criteria

It is necessary to know the quality of each rule because the rule with the highest value
is needed for the final hypothesis. In this case, we define three evaluation functions:
accuracy (ACC), F1-score (F1), area under the ROC curve (AUC), and their adjusted ver-
sions for evaluating the potentially best results that the current rule can achieve after
refinements in future evaluations. Accuracy works well for balanced problems (the num-
ber of positive examples is similar to the number of negative ones) and both classes are
equally important. F1 and AUC help when dealing with imbalanced classes, F1 puts more
emphasis on the positive class.
First of all, we define four elements of confusion matrix: number of true positives

(TP), number of false positives (FP), number of false negatives (FN), and number of true
negatives (TN) examples that are covered by an arbitrary rule R, see Fig. 2.
TP is given as a cardinality of the intersection of two sets, a set of examples that are

covered by the rule R and a set of positive examples E+. FP is given as a cardinality of
the intersection of two sets, a set of examples that are covered by the rule R and a set of
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negative examples E−. TN is given as a cardinality of the subtraction of two set, a set of
negative examples E− and a set of examples that are covered by the rule R. Finally, FN is
given as a cardinality of subtraction of two sets, a set of positive examples E+ and a set of
examples that are covered by the rule R. All equations are shown below.

TP = |�(R) ∩ E+| (7)

FP = |�(R) ∩ E−| (8)

TN = |E−\�(R)| (9)

FN = |E+\�(R)| (10)

Corresponding accuracy (ACC) of an arbitrary rule R can be computed by the widely
known equation below:

QACC(R) = TP + TN
TP + TN + FP + FN

(11)

However, the potentially highest accuracy of rule refined from R is computed differently.
In Eq. 11, we see that the eventual accuracy is given by the numerator (TP and TN)
whereas the denominator has the normalization function. The refinement may improve
the rule quality in such a way that the examples that are classified as FPwill be re-classified
to TN, i.e. the numerator of Qp_ACC may at best be given by the sum of TN, TP, and FP.
The equation for the potentially highest quality reached through refinement follows:

Qp_ACC(R) = TP + TN + FP
TP + TN + FP + FN

(12)

The computation ofQp_ACC in Eq. 12 assumes that the rule R aims to cover positive exam-
ples rather than negative ones. In other words, examples that are covered by the rule R are
classified as positive. Secondly, we propose another evaluation measure that is based on
F1-score that implicitly does not take into account the number of TNs. Its common form
is depicted in Eq. 13.

Fig. 2 A graph representing a set of positive examples P and negative examples N and the way they are
covered by a rule R assuming that R is focused on the classification of positive examples. Subspaces
corresponding to TP, FP, FN and TN examples are also depicted
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QF1(R) = 2 × TP
2 × TP + FP + FN

(13)

The corresponding version of potentially best accurate rule created by applying refine-
ment operator to rule R that is based on the F1 measure takes the following form:

Qp_F1(R) = 2 × TP
2 × TP + FN

(14)

where all negative examples covered by rule R (FP) are excluded from the denominator
in comparison with Eq. 13. Since there is still the possibility of finding such a rule which
covers all examples determined as TP and none of the FPs.

Example 4 Consider the ontology O and mappings M,M′, S from Example 1, and a set
of positive (E+) and negative (E−) examples from Example 3. Further, we define a rule
R = {t2}. First of all, we find examples that are covered by the rule using � operator, i.e.
�({t2}) = S(t2) = {e1, e2, e3}. Secondly, we compute TP, FP, FN and TN:

TP = |�(r) ∩ E+| = |{e1, e2, e3} ∩ {e1, e3}| = 2

FP = |�(r) ∩ E−| = |{e1, e2, e3} ∩ {e2}| = 1

TN = |E−\�(r)| = |{e2} ∩ {e1, e2, e3}| = 0

FN = |E+\�(r)| = |{e1, e3} ∩ {e1, e2, e3}| = 0

Finally, we substitute these numbers in Eqs. 11 and 12:

QACC(R) = TP + TN
TP + TN + FP + FN

= 2 + 0
2 + 0 + 1 + 0

= 2
3

Qp_ACC(R) = TP + TN + FP
TP + TN + FP + FN

= 0 + 0 + 1
0 + 0 + 1 + 2

= 1
3

The final ACC of rule R over the set of positive and negative examples is 2
3 and the potential

best ACC for the set rule and the set of examples is 1
3 .

Finally, let us give the rule quality in terms of AUC. The area under the curve can be
computed easily. Since only the single rule is taken into consideration, its quality is deter-
mined by a single point in the ROC plot and it can be computed as a sum of areas of two
triangles and one rectangle using an Eq. 15.

QAUC(R) = FPR × TPR + (1 − FPR) × TPR + (1 − FPR) × (1 − TPR)

2
(15)

TPR (true positive rate) and FPR (false positive rate) are calculated as follows:

TPR = TP
TP + FN

, FPR = FP
FP + TN

(16)

Qp_AUC(R) = TPR + (1 − TPR)

2
(17)

The adjusted version of AUC computing a potentially best AUC that a rule can achieve
is shown in Eq. 17. In contrast to Eq. 15, Qp_AUC supposes that FPR goes to zero.

Feature construction

In the Problem definition section, we defined the rule spaceR as a quasi-ordered set that
is expressed as a pair of a set of rules and the relation �r between rules. In addition, the
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form of rules is determined by propositional logic; more precisely, the rule is restricted to
a conjunction of positive terms, i.e.

R = t1 ∧ t2 = {t1, t2}, t1, t2 ∈ O.

The first step in the rule learning process is feature construction because rule learning
employs features as their basic building blocks. In this work, features are constructed
trivially from a set of terms T which comes from the ontology O where each ontology
term corresponds to one feature.

Feature selection

Oftentimes, a constructed feature set is extremely large and also redundant since it con-
tains many features that are not associated with any example. For this reason, a feature
selection method is highly recommended. Given this, we propose three various feature
selection methods.

FS_atLeastOne

The first feature selection method excludes such terms from a constructed feature set
which are not associated with at least one example from a set E+ ∪ E−. In other words,
this feature selection method removes such terms that are highly specific or do not cover
any example. This method guarantees that removed terms cannot positively affect the
final evaluation score of a rule because these terms cover an empty set of examples. For
this reason, if such terms appeared in a rule then the rule would cover an empty set of
examples.

FS_onlySig

The second feature selection method preserves only features whose terms are significant.
P-values are calculated using a Likelihood Ratio Statistic (LRS) as is presented in [20].
The LRS for the two-class problem measures differences between two distributions: the
positive and negative class probability distribution within the set of covered examples and
the distribution over the whole example set. It is computed as follows:

LRS(r) = 2 ×
(
TP × log2

TP
TP+TN
TP+FN

|E|
+ TN × log2

TN
TP+TN
FP+TN

|E|

)
(18)

This measure is distributed approximately as χ2 distribution with 1 degree of freedom
for two classes. If the LRS is above the specific significance threshold then the term is
considered to be significant.

FS_sigAtLeastOne

The third feature selection method combines the two previous feature selection methods.
A term that belongs to the feature set has to satisfy two conditions: 1) that term covers at
least one example, and 2) the term is significant which is calculated by the LRS or the term
is a generalization of some significant term. This method combines requirements from
the previous two selection methods, its selectivity will be experimentally verified later.

Rule construction

Rule construction is the second step which aims to find a rule that optimizes a given
quality criterion in the search space of rules.
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The description of the algorithm for single rule learning is depicted in Algorithm 2
where input is a set of positive examples E+, a set of negative examples E−, a set of ontolo-
gies O, a function buildMapping that creates a link between the ontology and the set
of examples E (E = E+ ∪ E−), and a parameter k that represents the maximal length
of induced rules. Note that this function is defined manually by a user. The first step
in Algorithm 2 is to find all features. This operation is represented by the function fea-
tureConstruction at line 4 that assigns all terms from the set of ontologies O to a set of
features F. To remove irrelevant features from the set of features F, we propose a func-
tion featureSelection at line 5. Here, three various feature selection methods are provided
as we mentioned in the “Feature selection” section, i.e. FS_atLeastOne, FS_onlySig, and
FS_sigAtLeastOne.
The main part of this algorithm is presented in lines 8-24. In this while loop, candidate

rules are gradually refined until the maximal length of the rule is reached (l variable rep-
resents the current length of rule) or there is nothing to refine, i.e. the algorithm did not
create any new rule in the previous iteration. In the for loop (lines 11-21), new candidate
rules are generated using the application of the refinement operator on the corresponding
parental rules. The algorithm iterates over each rule that is presented in the set of rulesR.
To this rule, we apply a new ontology-based refinement operator which is represented at
line 12 by the function refineRule that uses the Redundant Generalization and Redundant
Non-potential reduction procedures. Similar to the traditional CN2 refinement operator,
the ontology-based refinement operator appends a feature to the refined rule. For exam-
ple, in the case of a conjuction of terms R = {t1, t2, t3}, a new rule is created as the union
of term t4 and terms in rule R, i.e. R_new = {t1, t2, t3} ∪ {t4}. A new refinement opera-
tor requires the following inputs: rule r to refine, a set of features F, an ontology O for
information about relationships, a score of the best rule RBEST_SCORE that has been dis-
covered, a set of positive and negative examples E, and a mapping M′ that represents a
connection between ontologies and examples. The operator returns a set of all refined
rules that are not Redundant Generalizations nor Redundant Non-potentials and assigns
them to newCandidates set.
The refineRule function that is described in Algorithm 3 starts with an empty set S

where a content of this set will be returned at the end of the function at line 10. The
cycle from lines 3 to 6 appends every feature to the rule that should be refined. Up to this
part, the algorithm is similar to the traditional refinement operator. However, all rules
that are not Redundant Generalization are excluded from the set S using the ontology
O that provides relationships among terms. This is done by calling a function removeRe-
dundGeneralizations at line 8. The function removeRedundNonPotentials removes such
rules that satisfy the definition of Redundant Non-potential rules. In this case, the func-
tion continuously checks the following: 1) R �r ∀s ∈ S∪R. This is true since each element
s represents a rule that is created as a refinement of rule R. 2) For each s, if its potential
quality Qp(s) is less than the quality Q(RBEST ) then remove s and all its more specific
rules from the set S. In other words, all rules in S whose potential quality can be greater
than the rule with the greatest qualityRBEST are preserved.
All candidate rules that were generated in refineRule function are assigned to the set of

new rules Rnew. In addition, all newCandidates are evaluated by the function evaluate-
Candidate and its corresponding quality score is compared to the rule with the highest
quality stored in a RBEST_SCORE . If such a compared rule has a better quality then this
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Algorithm 2: refineRule
input : r, F ,O,RBEST_SCORE , E,M′

output: S // set of refined rules

1 S ← ∅
2 // Append all features to the rule

3 foreach f ∈ F do
4 newRule ← r ∪ f
5 S ← S ∪ newRule
6 end
7 // Filter rules

8 S ←removeRedundGeneralizations(S,O)

9 S ←removeRedundNonPotentials(S, r,O,RBEST_SCORE, E, M′)
10 return S

rule is assigned to theRBEST variable and the score is stored in theRBEST_SCORE variable.
Simultaneously, the rule has to be significant. To compute this significance, we use LRS
as we did in feature selection.
At the end of the algorithm, the best rule of the all rules that have been discovered is

returned. If the function filterRules at line 22 is omitted then the Algorithm 2 is called
a brute-force exhaustive search that explores the whole search space and leads to a com-
binatorial explosion. For this reason, an appropriate heuristics should be provided for
reducing the search space. In this work, we use Beam search that expands only the most
promising rules based on the evaluation function. Other rules are disregarded.

Results and discussion
In this section, we propose an evaluation procedure that experimentally confirms the effi-
ciency of the new ontology-based refinement operator using two reduction procedures:
the Redundant Generalization and the Redundant Non-potential. The algorithm with
the ontology-based operator is called sem1R and it is compared against the traditional
refinement operator used in CN2, which does not exploit any external knowledge during
the rule refining process. Here, it is called exhaustive refinement. The ability to reduce
a search space is tested on three different datasets with three feature selection methods
(FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne) and with three different evaluation
functions (ACC, AUC, and F1-score). Observed parameters as a total number of explored
rules, which must be refined to find the best rule, and also run times, were measured for
the sem1R and exhaustive refinement. All presented algorithms are implemented in C++
and work with the Open Biological and Biomedical Ontology (OBO) format. Note that
the algorithms require at least one ontology.
Because the proposed algorithm requires three inputs, we define their format as it is

used in our R package. The datasets are represented as a two-dimensional binary matrix
D with i rows, j columns, a set of row ontologies R, and a set of column ontologies C. The
mapping M′ is constructed such that each row and column is associated with a subset of
ontology terms. This construction step has to be done manually by a user based on expert
knowledge. In practice, it is necessary to have specific identifiers for rows and columns
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and these identifiers are associated with corresponding ontology terms. In gene expres-
sion analysis, such an identifier can be gene ID (e.g. FBgn for Drosophila melanogaster,
ENSB for human ormousemusculus) for rows and sample ID (e.g. FBbt for anatomy com-
partments of Drosophila melanogaster or Experimental Factor Ontology for experiment
metadata) for columns.
To transform a dataset from a two-dimensional binary matrix to the set of positive and

negative examples, we design the following procedure. First of all, we suppose that each
element of the matrix D represents one example. Then all matrix elements containing 1s
are assigned to the set of positive examples E+ and elements with 0s are assigned to the
set of negative examples E−. For a non-binary matrix D, binarization is necessary.
The first tested dataset comes from [30] and describes the gene expression of imaginal

discs of Drosophila melanogaster (DISC) where rows of the dataset correspond to genes
and columns correspond to samples. Note that this format is used for all tested datasets.
Rows (genes) of DISC dataset are described by Gene ontology [6, 7] and KEGG BRITE
database. Columns (samples) are described by Drosophila anatomy ontology (DAO) [31].
The second dataset called Dresden Ovary Table (DOT) [32, 33] describes gene expression
and RNA localization in fly ovaries using Gene ontology, KEGG BRITE database, and an
ontology provided by the authors is freely available at [33], respectively. Note that DOT
and DISC are originally formed as a binary matrix. Last but not least, the third dataset
was downloaded via Expression Atlas [34] where it is called Strand-specific RNA-seq of
nine mouse tissues[35] (m2801) and using Gene ontology and Experimental Factor Ontol-
ogy (EFO) [36]. For binarization, we set up cutoff to 0.5 TPM (Transcripts Per Kilobase
Million) because it is presented as a default value in Expression Atlas and it maintains
comparable numbers of positive and negative examples. If a value in the matrix is higher
than 0.5 TPM then the value is set to 1 and the element is assigned as a positive example
otherwise the value is 0 and the element goes to the set of negative examples E−.
Also, it may be desirable to find descriptive rules only for pre-defined rows (genes) or

columns (samples) that are relevant to specific research. Specifically, it can be signifi-
cantly expressed genes in a treatment group against the control group. In this case, the
matrix D has only is rows corresponding to significantly expressed genes and jt columns
corresponding to samples belonging to the treatment group and jc columns belong the
control group. Here, each of the elements belonging to the treatment group is set up to 1
and is considered to be positive, others are 0 which means negatives. The total number of
examples is is × jt and is × jc for positive and negative examples, respectively.
Basic statistics of tested datasets, as a number of rows and columns, a number of pos-

itive and negative examples, and a number of ontology terms for given ontologies, are
depicted in Table 1. Because there are some terms that do not associate with any exam-
ple and such terms are not good candidates to be a feature since they do not cover any
example, the final feature sets can be given by one of the three feature selection methods
mentioned in the “Feature selection” section. The numbers of features that were used for
each rule induction step are shown in Fig 3.
These experiments clearly confirm our presumptions, defined in the “Feature selection”

section, where we assumed that themost reducing feature selectionmethod is FS_onlySig.
On the other hand, the most benevolent or conservative method is FS_atLeastOne, which
guarantees that any of the relevant features possibly positively affecting the quality score
of the hypothesis will not be discarded from the feature set. The FS_sigAtLeastOne
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Table 1 Statistics for DOT, DISC, and m2801 dataset

Dataset Size # of pos/neg examples # of ontology terms

DOT 6,510 ×100 309,593/341,407 42,964 (GO)/32,488 (BRITE)/140 (DOT)

DISC 1,207 ×72 65,537/21,367 42,964 (GO)/32,488 (BRITE)/9,255 (DAO)

m2801 12,225 ×26 124,032/193,818 42,964 (GO)/18,786 (EFO)

demonstrates a similar behavior to FS_atLeastOne. Concretely, the FS_sigAtLeastOne
method produces a smaller feature set than FS_atLeastOne. However, the differences are
not huge.
To avoid a combinatorial explosion problem in exploring the rule space, we use a Beam

search which is represented by filterRules function in Algorithm 2. The width of the beam
was set no higher than the 100 best rules, the rules are sorted according to their qual-
ity score calculated with one of the given evaluation functions. We decided to use this
threshold, because greater beamwidths result in huge run times in exhaustive refinement.
Higher beam widths also increase memory requirements. At the same time, the ability
of sem1R to reduce the search space and consequently reduce run time is obvious even
below the beam width of 100. Theoretically, it is anticipated that the ability to reduce a
search space grows with the beam width since there are potentially more rules to prune
especially for Redundant Non-potential procedure.
Total run time and total number of explored rules were observed for rules with the

maximum length of 10 because longer rules can be more difficult to interpret in real
problems, especially in a biology domain. The total number of induced rules for each
dataset was set to 10, for the same reason as previously mentioned. The final results of

Fig. 3 An average number of features across DISC, DOT, and m2801 datasets for three various feature
selection methods FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne. These results were computed using
three evaluation functions ACC, AUC, and F1-score
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Table 2 Total runtime [s] and a total number of explored rules of sem1R algorithm for DOT, DISC,
and m2801 dataset

Dataset Feature selection
ACC score F1 score AUC score

Total time # of rules Total time # of rules Total time # of rules

DOT

FS_atLeastOne 303.636 107,964 22.381 26,460 142.302 52,638

FS_onlySig 235.947 54,167 11.427 9,780 102.760 25,817

FS_sigAtLeastOne 250.633 107,535 19.813 25,756 115.994 52,136

DISC

FS_atLeastOne 10.737 102,219 8.059 178,346 60.780 609,937

FS_onlySig 1.777 87,671 1.109 7,223 33.304 67,558

FS_sigAtLeastOne 1.955 13,041 1.330 11,270 25.861 91,003

m2801

FS_atLeastOne 699.273 461,745 28.087 80,079 168.210 225,081

FS_onlySig 914.283 340,039 21.594 18,787 148.992 82,456

FS_sigAtLeastOne 802.176 433,393 18.939 32,054 123.561 124,002

experiments as total run time in seconds and total number of explored rules are depicted
in Table 2 for sem1R and in Table 3 for exhaustive refinement.
A graphical representation is shown in Figs. 4 and 5. The first one shows run times in

logarithmic scale depending on the number of induced rules for sem1R (dashed line) and
exhaustive refinement (full line). Run time was measured for three datasets with three dif-
ferent evaluation functions and with three different feature selection methods. Evidently,
in all cases, the run time of sem1R is significantly lower. Figure 5 shows the total num-
ber of rules that have been evaluated in a logarithmic scale that depends on the number
of rules. As in the previous figure, the number of rules was measured for three datasets
with three different evaluation functions and with three different feature selection meth-
ods. But even in this case, sem1R with its Redundant Generalization and Redundant
Non-potential procedures prunes the rule space more rapidly in comparison with the tra-
ditional exhaustive refinement. Note that using FS_onlySig method, the smallest number
of rules is evaluated. This corresponds to the results in Fig. 3.
In all various experimental settings, both exhaustive refinement and sem1R induce rules

with the same quality score across corresponding experiments. The level of significance
was set to 99% for feature selection method FS_onlySig and FS_sigAtLeastOne and also
the same significance level for finding the best rule in induceSingleRule function. From
Figs. 4 and 5 it is obvious that F1-score prunes the search space most and the run of the
algorithm is fastest. One of the reasons is that only TP, FP, and FN must be calculated

Table 3 Total runtime [s] and the total number of explored rules of exhaustive refinement for DOT,
DISC, and m2801 dataset

Dataset Feature selection
ACC score F1 score AUC score

total time # of rules total time # of rules total time # of rules

DOT

FS_atLeastOne 33,800.529 62,192,307 12,807.090 21,977,679 22,814.993 37,604,456

FS_onlySig 15,849.761 30,991,466 5,049.444 8,075,976 9,042.203 15,672,577

FS_sigAtLeastOne 33,638.549 61,912,986 12,743.265 21,674,132 22,726.459 37,176,099

DISC

FS_atLeastOne 996.587 10,681,537 881.007 11,017,701 2,214.819 38,874,717

FS_onlySig 623.078 6,125,970 524.412 6,041,883 1,323.920 21,618,242

FS_sigAtLeastOne 963.291 9,406,704 817.055 9,484,372 2,145.880 37,172,305

m2801

FS_atLeastOne 53,163.030 153,778,914 6,573.700 26,766,658 12,766.542 64,329,543

FS_onlySig 29,641.080 86,150,004 3,873.421 14,168,195 6,741.368 29,298,233

FS_sigAtLeastOne 53,019.570 153,255,327 6,431.049 25,255,830 12,391.710 59,322,805
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Fig. 4 Total run time in logarithmic scale scale depending on the number of induced rules for three datasets
(DISC, DOT, and m2801). ACC, AUC, and F1-score were used for evaluating the quality of rules and three
feature selection methods (FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne) were applied before rule
induction. Dashed line represents sem1R, full line represents exhaustive refinement

here. On the other hand, AUC is less strict in the pruning of the search space and it is also
the slowest, because Eqs. 15, 16 and 17 have to be calculated for every candidate solution
and the algorithm has to evaluate the highest number of candidate rules. There is a clear
trade-off between the efficiency and complexity of evaluation that stands behind AUC.
All results of the experiments are appended to Additional file 1.
For illustration and better understanding, we present an example of 2-terms long rule

induced from the DISC dataset, where each term comes from a different ontology. The
rule is following: GO:0002181 AND FBbt:00000015. This reported rule is enriched (it
covers far more positive examples than expected by random). The FBbt identifier refers
to a term from Drosophila anatomy ontology and the GO identifier refers to a term from
Gene ontology. In this particular case, the rule says that all genes that are associated with
a cytoplasmic translation process (the chemical reactions and pathways resulting in the
formation of a protein in the cytoplasm) tend to be over-represented in thorax segment
of Drosophila melanogaster.

Conclusion
We proposed and implemented a new rule learning algorithm that induces a set of rules
related to ontologies or taxonomies. Using two novel reduction procedures Redundant
Generalization and Redundant Non-potential, which are part of the proposed ontology-
based refinement operator, we dramatically reduce the search space. Consequently,
runtime of the algorithm is decreased rapidly as well. These procedures guarantee that
any removed rule cannot positively affect the quality of the final hypothesis. Also, three
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Fig. 5 Total number of candidate rules in logarithmic scale depending on the number of induced rules for
three datasets (DISC, DOT, and m2801). ACC, AUC, and F1-score were used for evaluating the quality of rules
and three feature selection methods (FS_atLeastOne, FS_onlySig, and FS_sigAtLeastOne) were applied before
rule induction. Dashed line represents sem1R, full line represents exhaustive refinement

various feature selection methods that help to increase the efficiency of the algorithm
were proposed. The algorithm is implemented in C++ and it is available at http://github.
com/fmalinka/sem1r as R package. We demonstrated our algorithm on three real gene
expression datasets, however, it is generally applicable to any learning task that combines
measurements and ontologies, including metabolomics, etc.
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27. Svatoš M, Šourek G, Železnỳ F, Schockaert S, Kuželka O. Pruning hypothesis spaces using learned domain theories.
In: International Conference on Inductive Logic Programming. Cham: Springer; 2017. p. 152–168.

28. Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach (2nd Edition). Upper Saddle River: Prentice Hall; 2002.
29. Michalski RS. On the quasi-minimal solution of the general covering problem. In: Proceedings of the 5th

International Symposium on Information Processing (FCIP-69). Bled: Vol. A3 (Switching Circuits); 1969. p. 125–28.
30. Borovec J, Kybic J. Binary pattern dictionary learning for gene expression representation in drosophila imaginal

discs. In: Asian Conference on Computer Vision. Cham: Springer; 2016. p. 555–69.
31. Costa M, Reeve S, Grumbling G, Osumi-Sutherland D. The drosophila anatomy ontology. J Biomed Semant.

2013;4(1):32.

https://doi.org/10.1007/bfb0017011
https://doi.org/10.1007/978-3-540-74958-5_82
https://doi.org/10.1007/978-3-540-74958-5_82


Malinka et al. BioDataMining           (2020) 13:13 Page 22 of 22

32. Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P. Systematic imaging reveals features and
changing localization of mrnas in drosophila development. Elife. 2015;4:. https://doi.org/10.7554/elife.05003.

33. Dresden Ovary Table. http://tomancak-srv1.mpi-cbg.de/DOT/main. Accessed 15 Feb 2016.
34. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, Füllgrabe A, Fuentes AM-P, Jupp S, Koskinen S,

et al. Expression atlas update—an integrated database of gene and protein expression in humans, animals and
plants. Nucleic Acids Res. 2015;44(D1):746–52.

35. Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in mammalian tissues.
Science. 2012;338(6114):1593–9.

36. Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova A, Brazma A, Parkinson H.
Modeling sample variables with an experimental factor ontology. Bioinformatics. 2010;26(8):1112–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7554/elife.05003
http://tomancak-srv1.mpi-cbg.de/DOT/main

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Gene set enrichment analysis
	Rule learning with ontological background knowledge
	Propositional rule learning

	Methods
	Problem formalization
	Proposed algorithm
	Reduction procedures
	Redundant generalization
	Redundant non-potential

	Evaluation criteria
	Feature construction
	Feature selection
	FS_atLeastOne
	FS_onlySig
	FS_sigAtLeastOne

	Rule construction

	Results and discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13040-020-00219-6.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

